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Heat Transfer and Fluid Flow 
Analysis of interrupted-Wail 
Channels^ With Application to Heat 
Exchangers 
An analysis has been made of laminar flow and heat transfer in channels whose walls are 
interrupted periodically along the streamwise direction. Such channels are frequently 
employed in high-performance, compact heat exchangers. Numerical solutions of the 
mass, momentum, and energy conservation equations yielded local heat transfer and 
pressure drop results. These results were obtained for a range of Reynolds numbers and 
for several values of a dimensionless geometrical parameter characterizing the streamwise 
length L of the individual plate segments which make up the interrupted walls. The 
Prandtl number was fixed at 0.7 for all the calculations. The basic heat transfer and pres
sure drop results were employed to investigate whether an interrupted-wall channel ex
periences an augmented heat transfer rate compared with that for a parallel plate chan
nel. For conditions of equal heat transfer surface area and equal pumping power, appre
ciably higher heat transfer rates prevailed in the interrupted-wall channel for a wide 
range of operating conditions. The augmentation was especially marked for relatively 
short channels and high Reynolds numbers. The results also demonstrated the existence 
of a new type of fully developed regime, one that is periodic. At sufficiently large down
stream distances, the velocity and temperature profiles repeat their values at successive 
axial stations separated by a distance 2L and, in addition, the average heat transfer coef
ficient for a plate segment takes on a constant value. 

geneous and a new boundary layer is restarted when the passage wall 
is resumed downstream of the interruption. 

Along with the augmentation of the heat transfer coefficient, there 
is an increase in pressure drop due to the higher skin friction associ
ated with the successive boundary layer restartings. Therefore, the 
evaluation of the overall performance of a heat exchanger having in
terrupted wall passages should take account of pressure drop and 
pumping power as well as of the enhanced heat transfer coefficients. 
These matters will be discussed more fully later in the paper. 

In the research to be described here, an analysis is performed for 
fluid flow and heat transfer in a heat exchanger made up of inter
rupted-wall passages as shown schematically on the left-hand side 
of Fig. 1. The available literature on heat exchangers of this general 
type (i.e., offset plate transfer surfaces) has very recently been re
viewed by Wieting [l].1 This survey indicated a complete absence of 

1 Numbers in brackets designate References at end of paper. 

E. M. Sparrow 
B. R. Baliga 

S. V. Paiankar 

Department of Mechanical Engineering, 
University of Minnesota, 

Minneapolis, Minn. 

Introduction 

It is well known that the heat transfer coefficients in the entrance 
region of a duct are substantially larger than those at locations farther 
downstream. This is because the entrance region is characterized by 
thin thermal boundary layers, whereas in the downstream region 
transport of heat occurs across the entire duct cross section. The fact 
that higher heat transfer coefficients are attainable in the entrance 
region has motivated the design of heat exchangers having flow pas
sages which consist, in effect, of a succession of entrance regions. The 
walls of such passages are interrupted periodically along the 
streamwise direction. Each interruption enables the velocity and 
temperature distributions to become more cross-sectionally homo-

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
August 6,1976. 

4 / FEBRUARY 1977 Transactions of the ASME Copyright © 1977 by ASME

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



~~_~~ _ I" a b e d 

a' b1 c' d' 

— X 2 

Fig. 1 Schematic diagram of an array of interrupted-wall passages 

analytical work and that only a modest amount of experimental data 
are available. A substantial portion of the data have Reynolds num
bers below 1000, and this range was characterized by Wieting as being 
"primarily laminar." There is, therefore, ample motivation for 
pursuing a laminar analysis of the flow and heat transfer, as will be 
carried out here. On the other hand, owing to fabrication irregularities 
such as burred or bent (or "scarfed" [2]) edges at the upstream and 
downstream ends of the surface interruptions, the results of a laminar 
analysis represent an ideal which can only be approximated in prac
tice. 

The array pictured in Fig. 1 can be envisioned as a stack of inter
rupted-wall channels. For example, one such channel has an upper 
wall which consists of plates 1, 3, 5 , . . . and a lower wall which consists 
of plates 2 , 4 , 6 , . . . . The streamwise length of each plate is L, and the 
streamwise length of the interruption between successive plates is also 
L. The transverse spacing between the interrupted channel walls is 
H. To enable the analysis to be performed on a two-dimensional basis, 
it is assumed that the span of the plate segments, normal to the plane 
of the page, is large compared with H. In addition, to facilitate the 
solution, the plates are assumed to have negligible thickness. 

The flow enters the array from the left with uniform profiles of 
velocity and temperature. Velocity and thermal boundary layers 
develop on the first rank of plates, typified by plate 1. The effect of 
this boundary layer development is mitigated, at least in part, in the 
gap downstream of plate 1 where diffusion and convection tend to 
restore the velocity and temperature to their bulk values. This enables 
new boundary layers to be restarted on the third rank of plates, typ
ified by plate 3, and so on and so forth. A similar sequence of boundary 
layer restartings occurs on the plates of the second, fourth, sixth,. . . 
ranks. 

The entering fluid temperature is Ti, whereas the plate segments 
are taken to be isothermal at temperature Tw. The plates can be 
envisioned to be fins of high conductivity or highly flattened tubes 
carrying an essentially isothermal fluid. 

It is relevant to establish the relationship between an inter
rupted-wall channel and a conventional parallel plate channel. To this 
end, reference may be made to the right-hand diagram of Fig. 1. Here, 
the interrupted channel is illustrated once again. Suppose that the 
plates in the second rank are translated downward by a distance H 
so that, for example, segment ab now occupies the position a'b'. 
Similarly, imagine the plates of the fourth rank to be moved down
ward so that cd occupies c'd'; and so forth and so on. Clearly, by such 
a rearrangement, the array of interrupted-wall channels has become 
an array of parallel plate channels, each of height 2H. The array of 
parallel plate channels has the same heat transfer surface area and 

the same frontal area as the array of interrupted channels. Therefore, 
it is natural to compare the heat transfer and flow characteristics of 
the two systems. Such comparisons will be performed later in the 
paper. 

The interrupted-wall heat exchanger of Fig. 1 encompasses complex 
fluid flow and heat transfer processes activated by the repetitive in
teraction of wakes and boundary layers. The solution of the problem 
requires a numerical approach as will be described shortly. There are 
three parameters whose numerical values have to be specified as a 
prelude to each solution. These include the Reynolds number, the 
ratio of plate length L to transverse spacing H, and the Prandtl 
number. The Reynolds number was evaluated by employing the 
Kays-London definition [2] 

Re = (4H)u/» (1) 

where 4H is the hydraulic diameter. The solutions encompassed the 
Reynolds number range from 200 to 1600 for values of L/H of 0.2,0.5, 
1, 2, and 5. The Prandtl number was fixed at 0.7 (air) for all of the 
solutions. 

The basic results obtained from the solutions are the dimensionless 
distributions of fluid bulk temperature and pressure drop as a func
tion of position along the length of the heat exchanger. These results 
can be employed as input to obtain all quantities of interest with re
spect to both heat transfer and fluid flow. We have employed these 
results to evaluate the heat transfer augmentation (relative to a par
allel plate channel) caused by the periodic interruption of the passage 
walls. 

Two findings of the present research are especially worthy of note. 
The first is with regard to the augmentation brought about by the 
interruption of the walls. For the conditions of equal pumping power 
and equal heat transfer surface area, heat transfer augmentations of 
up to 80 percent relative to the parallel plate channel were encoun
tered. The present analytically based augmentation calculations are 
unusual in that the augmentation information available in the liter
ature is generally based on experiments. 

The other finding has to do with the concepts of fully developed 
flow and heat transfer. These concepts are well understood for con
ventional duct flows, where the velocity profile eventually becomes 
independent of the streamwise coordinate x and the heat transfer 
coefficient may also become independent of x [3]. On the other hand, 
for an interrupted-wall passage, the periodic restarting of the 
boundary layer precludes the attainment of fully developed conditions 
characterized by an x -independent velocity profile and heat transfer 
coefficient. Rather, as will be demonstrated later, fully developed 
conditions occur periodically for interrupted-wall passages such as 
those of Fig. 1. Specifically, at sufficiently large downstream distances, 
the velocity profiles at stations x, (x + 2L), (x + 4L), . . . will be 
identical, as will the values of the local heat transfer coefficients. 

Analysis 
From an examination of the left-hand diagram of Fig. 1, it is evident 

that the fluid flow and heat transfer processes that occur in any one 
channel are repeated in all of the channels which make up the array. 
Therefore, it is sufficient to confine the analysis to a single channel. 
For concreteness, we deal with the channel whose upper boundary 
consists of plates 1, 3, 5 , . . . together with the intervening interruption 
segments at y = if and L < x < 2L, 3L < x < 4L Similarly, the 

••Nomenclature-

cp = specific heat 
H = transverse spacing between plates 
k = thermal conductivity 
X = overall length of channel 
L = length of plate segment 
m = mass flow rate per unit span 
Pr = Prandtl number 
p = pressure 
Pi = inlet pressure 

Q = surface-integrated heat transfer rate 
maximum value of Q, rhc„(Tw — 

Ti) 
Re = Reynolds number, (AH)u/v 
T = temperature 
T(, = local bulk temperature 
Ti = inlet temperature 
Tw = wall temperature 
u, u = velocity components 
u = mean velocity 

x, y = coordinates 
a = thermal diffusivity 
Ap = pressure difference, (p — p;) 
v = kinematic viscosity 
P = density 

Subscripts 

0 = parallel plate channel 
P = equal pumping power 
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lower boundary is made up of plates 2, 4, 6, ... and their intervening 
interruption segments. It may be noted that each interruption seg
ment is a symmetry line so that 

v = 0, au/ay = aT/ay = 0 (1) 

This is in contrast to the plate surfaces, where 

u = v '" 0, T = Tw (2) 

The conservation equations which serve as the basis of the finite 
difference formulation are those that are commonly employed for 
hydrodynamically and thermally developing duct flows. These 
equations are identical to the well-known boundary layer equations 
for external flows in that streamwise second derivatives are omitted 
and the pressure is regarded as a function only of the streamwise 
coordinate (which eliminates further consideration of the cross-stream 
momentum equation). For constant fluid properties and for negligible 
viscous dissipation and compression work, the momentum, mass, and 
energy equations become 

u(au/ax) + v(au/ay) = -(dp/dx)/p + v(a2u/ay2) (3) 

au/ax + av/ay = 0 (4) 

u(aT/ax) + v(aT/ay) = C/(a2T/ay2) (5) 

where the x and y coordinates are shown in Fig. 1 and the symbols are 
defined in the Nomenclature. 

The major difference between the analysis of external boundary 
layers and of duct flows is that whereas the pressure gradient dp/dx 
is a known input in the former, it is an unknown in the latter. What 
is known in a duct flow is that a given mass flow passes through a 
specified cross-sectional geometry. This information is employed in 
determining the pressure gradient. 

The general structure of the finite difference formulation follows 
that of Patankar and Spalding [4], with x and w (a dimensionless 
stream function ranging from zero to one) being used as the coordi
nates instead of x and y. However, the procedure described in [4] for 
dealing with the pressure gradient involves some arbitrariness; 
therefore, a new procedure was devised, the essential features of which 
are outlined in the Appendix. This procedure enables an initial esti
mate of dp/dx to be corrected so that the true value is obtained. 

The grid was laid out with a total of 31 points in the transformed 
cross-stream coordinate w, with a higher concentration of grid points 
near the channel boundaries w = 0 and w = 1. The deployment pattern 
of the grid points in the streamwise direction was investigated via 
auxiliary computational experiments. It was found advantageous to 
employ a layout which started with a very small step size at the leading 
edge of each plate, with the sizes of the successive steps increasing in 
ac~;ordance with the relation LlXi+l = 1.5 LlXi and remaining constant 

0,06 

0.02 

xi2H 
Re 

0,04 

0.04 

X/2H 
Re Pr 

0,02 

0.06 0,08 

-6p 

(112)p0 2 

Fig. 2 Distributions of bulk temperature and of pressure along the length of 
an interrupted-wall channel, L/H = 0.2 
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Fig. 3 Distributions of bulk temperature and of pressure along the length of 
an interrupted-wall channel, L/H = 0.5 

once a value LlX max had been attained. The initial step size LlXl was 
proportional to the Reynolds number. This pattern was repeated for 
each of the plates along the length of the channel. 

Aside from the accuracy tests involved with the step size studies, 
comparisons were made with published analytical information for 
related problems, the parallel plate channel being the most relevant. 
A comparison of local Nusselt numbers obtained from the present 
procedure with those of Mercer, Pearce, and Hitchcock [5] showed 
excellent agreement. 

To supplement the foregoing statement of the governing equations 
and boundary conditions, it is relevant to list those facets of the an
alytical model which may reflect departures from conditions in op
erational heat exchangers. 

1 Uniform entering flow, without free stream turbulence and free 
of other disturbances (which might be caused by supports and 
grilles). 

2 Plane plates of negligible thickness whose leading and trailing 
edges are neither bent nor burred. 

3 Isothermal plate surfaces. 
4 Steady, separation-free flow in the wakes of the plates for which 

the boundary layer equations provide an adequate description. 
5 Two-dimensional flow and heat transfer with negligible influ

ence of span wise variations. 

Results and Discussion 
Heat Transfer and Pressure Drop Results. There is a variety 

of dimensionless groups currently in use for the presentation of heat 
transfer results for heat exchangers, for example, Nusselt number, 
Stanton number, j-factor, effectiveness, etc. These groups are var
iously employed in the LMTD (log-mean temperature difference) and 
NTU (number of transfer units) approaches to heat exchanger design. 
For the presentation of the results obtained here, it appeared rea
sonable to employ a grouping from which all other groups could be 
readily deduced and which would facilitate a broad range of perfor
mance calculations. On this basis, the dimensionless local bulk tem
perature, (Tb - Ti)/(Tw - Ti), was selected as the presentation 
variable for the heat transfer results. 

The heat transfer and pressure drop results for the interrupted-wall 
channel are presented as solid lines in Figs. 2-6 as a function of po
sition along the length of the channel. The successive figures corre
spond to ratios of plate length to tranverse spacing L/H equal to 0.2, 
0.5, 1, 2, and 5. In each figure, the bulk temperature distributions are 
referred to the left-hand ordinate, where the group (Tb - Ti)/(Tw -

Ti) ranges from zero to one, and to the lower abscissa, where the 
streamwise coordinate x is incorporated into the dimensionless pa
rameter (x/2H)RePr. The inclusion of Re in the abscissa variable 
helps to bring together the results for the various Reynolds numbers, 
although a residual dependence on Re remains. Pr is included to help 
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Fig. 4 Distributions of bulk temperature and of pressure along the length of Fig. 6 Distributions of bulk temperature and of pressure along the length of 
an interrupted-wall channel, L/H = 1 an interrupted-wall channel, L/H = 5 

generalize the results to Prandtl numbers other than the value 0.7 for 
which the solutions were obtained. 

The pressure distribution along the channel is expressed as the 
difference between the local pressure p at x and the pressure p; at the 
inlet cross section. The pressure difference —Ap = (p,- — p) is made 
dimensionless by lk,pu2, so that the pressure drop is measured in terms 
of the velocity head. The dimensionless pressure distributions are 
referred to the right-hand ordinate and to the upper abscissa. 

Also included in the figures are dashed lines which represent the 
results for a parallel plate channel of height 2H. As was discussed in 
the Introduction in connection with the right-hand diagram of Fig. 
1, an array of such parallel plate channels has the same heat transfer 
surface area and the same frontal area as the array of interrupted-wall 
channels. When plotted against (x/2H)Ke, the bulk temperature and 
static pressure distributions for the parallel plate channel are inde
pendent of the Reynolds number. Furthermore, since the parallel 
plate channel is in no way influenced by the L/H ratio, the dashed 
lines which appear in each of the successive figures are identical. 

The dimensionless bulk temperature distributions of Figs. 2-6 can 
also be interpreted as a heat transfer ratio. For fluid passing through 
a channel whose walls are at Tw, the maximum rate of heat transfer 
corresponding to an inlet temperature T; and a mass flow rate m is 
Qmax = rncp(Tw - Ti). The attainment of <?max requires that the 
channel be very long. For a finite length of channel between x = 0 and 
x = x, the surface-integrated heat transfer rate may be denoted by 
Q and the bulk temperature at x by Tt, such that Q = mcp(Ti, — Ti). 
Therefore, 

X/2H 
Re 

0.04 0.02 

Q/Qmex = (Tb - T,)/(TW - Ti) (6) 
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- / 

\ 
R e = ^ ^ ^ 
^ £ > ^ > ^ \ 400 

\ " /s'/'sK 8 0 0 

O X ? ) ^ . - ' " //PLATES 

V / \ ^ \ f \ \ / 1 6 0 0 

/ / l > 0 ~ \ \ \ „ „ „ 

~~^~~ ^ ^ $ $ 5 x ,-200 
//PLATES ~ - - ^ < $ 5 5 < f 

|L/H = 2 | ~ ~ > ^ ^ b 

-

-Ap 

U/Z)PUd 

0.02 0.04 0.06 0.08 0.1 
X/2H 
RePr 

Fig. 5 Distributions of bulk temperature and of pressure along the length of 
an Interrupted-wall channel, L/H = 2 

Thus, the larger the ordinate value of the dimensionless bulk tem
perature distribution, the greater is the surface-integrated heat 
transfer rate. Since the latter necessarily increases with increasing 
downstream distance, the distribution curves rise as x increases, 
ultimately leveling off as Qmflx is approached for sufficiently large 
x. 

Attention will now be turned to the trends evidenced by the results 
of Figs. 2-6. In each figure, the relative heat transfer performance of 
the interrupted-wall and parallel plate channels can be identified by 
comparing the ordinates of the solid and dashed curves. If the cor
responding ordinates are compared at a given value of the abscissa, 
the implied conditions of the comparison are equality of the channel 
lengths and equality of the mass flows. The equality of mass flows is 
one of many possible constraints that may be considered, as is dis
cussed more fully in the next section. 

For the aforementioned conditions of comparison, the heat transfer 
performance of the interrupted-wall channel is clearly superior to that 
of a parallel plate channel. The widening of the spread between the 
solid and dashed curves as L/H decreases is indicative of a relatively 
better performance of the interrupted-wall channel. Also, the spread 
between the solid and dashed curves is accentuated at higher Reyn
olds numbers, especially when the plate segments are relatively long 
(i.e., large L/H). 

Thus, the foregoing findings corroborate the a priori expectations 
of comparisons made at equal mass flows and equal heat transfer 
surface areas. That is, the interrupted-wall channel yields superior 
heat transfer performance, which is especially marked when the plate 
segments are short and the Reynolds number is high. 

Unfortunately, a comparison of pressure drops for the inter
rupted-wall and parallel plate channels under the same set of con
straints shows that a toll in higher pressure drop is being paid for the 
heat transfer augmentation. This toll is greater when the plate seg
ments are short and the Reynolds number is high. In addition, the 
increase in pressure drop owing to the wall interruptions has a special 
impact in long channels. As is evident from Figs. 2-6, the heat transfer 
augmentation for long ducts diminishes with increasing downstream 
distance since Q is bounded by Qmax for both the interrupted-wall and 
parallel plate channels. On the other hand, the pressure drop penalty 
is still exacted without abatement. Therefore, on a constant mass flow 
basis, the use of interrupted plates appears to be less attractive for 
long channels than for intermediate length channels. 

The foregoing discussion isjbased on an interpretation of the results 
within the context of the presentation variables used in Figs. 2-6. 
Other interpretations are possible, as will be seen later. 

Heat transfer coefficients and Nusselt numbers can readily be de-
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duced from Figs. 2-6, if desired. Various definitions may be employed 
depending on the choice of the thermal driving force. For example 

hi = (Q/A)l(Tw-Ti), h2 = (QM)/(LMTD) (7) 

where LMTD is the log-mean temperature difference involving (Tm 

- Tj) and (Tm — Ti,).Q is the overall rate of heat transfer per channel, 
and A is the surface area, which is equal to x (per unit span). If 4>b is 
used to denote the dimensionless bulk temperature ordinate of Figs. 
2-6,then 

fti(4ff) 06 ,„ , 
= (8a) 

k 2(x/2H)/RePt 
h2(4H) _ - In ( 1 - 0 6 ) . 

k 2(x/2H)/RePr 

Stanton numbers and Colburn /'-factors can be obtained directly from 
equations (8a) and (8b). 

As a final matter with respect to Figs. 2-6, the data symbols ap
pearing in Fig. 6 will now discussed. These symbols are intended to 
indicate positions at which * = nL, where n = 1,2, 3 , . . . . Thus, each 
symbol corresponds to the terminal point of plate n and to the be
ginning of plate (n + 1). Except for x < L, the curves were drawn by 
smoothly connecting the points plotted as x = nL, without consid
eration of the results at the intervening points. A corresponding 
presentation for all the curves in Figs. 2-6 would have made the 
plotting and drafting too arduous. 

Augmentation. The question of whether an alternative surface 
configuration gives rise to heat transfer augmentation relative to a 
standard surface depends on the constraints under which the com
parison is made [6], In the foregoing section of the paper, comparisons 
were made at equal mass flow and equal surface area because these 
constraints arose naturally from the presentation variables. Now, 
augmentation will be examined for constraints which appear to be 
more commonly accepted in the literature [7, 8]. 

Specifically, we wish to compare the rate of heat transfer Q for an 
array of interrupted-wall channels (plate length L, transverse spacing 
H) with the rate of heat transfer Qo for an array of parallel plate 
channels (channel height 2H) under the following simultaneous 
constraints: 

(a) equal heat transfer surface area; 
(6) equal pumping power, (m/p)Ap. 

In view of the pressure drop characteristics presented in Figs. 2-6, the 
equal pumping power constraint requires that the rate of flow through 
the interrupted-wall channels be lower than that in the parallel plate 
channels. The Reynolds numbers will, therefore, be different so that 
Figs. 2-6 cannot be employed directly for the comparison. 

The computational procedure for determining Q/Qo subject to the 
aforementioned constraints will be outlined briefly. First, the heat 
transfer surface area is fixed by selecting the stream wise length of the 
heat exchanger JC/H. Then, a graph of dimensionless pumping power 
versus Reynolds number is prepared for the parallel plate channel 
using the dashed pressure drop curve in any of Figs. 2-6. Next, the 
geometry of the interrupted channel is chosen by fixing L/H. A 
Reynolds number Re for this channel is selected and the cor
responding dimensionless pumping power is evaluated. With this 
pumping power, one returns to the pumping power—Reynolds 
number graph for the parallel plate channel and reads out the 
Reynolds number Reo. 

With the values of Re and Reo (along with X/H and Pr), the ab
scissa variable in the appropriate figure among Figs. 2-6 is then 
evaluated for both of the channels, and the {Th - Tt)/(TW - T;) are 
read out. Then, since 

Q = mcp(Th - Ti), Qo = rfioc„m - T;)o 0 ) 

It follows that 

/Q_\ = Re(Tb-Ti)/(Tw-Ti) 

\QJP ReoCTt - Ti)0/(TW - T) 

The subscript P. has been appended to the Q/Qo ratio to identify the 
constant pumping power constraint. 

ZOO 600 1000 1400 

Re 

Fig. 7 Ratio of heat transfer in interrupted-wall and parallel plate channels 
for equal pumping power and equal surface area 

The (Q/Qo)p ratio has been evaluated for three heat exchanger 
lengths, X/H = 20,60, and 100, and for interrupted-wall channels with 
L/H values of 0.2,0.5,1,2, and 5. For each of these cases, the Reynolds 
number Re of the interrupted-wall channel was varied from 200 to 
1600. The results of these computations are presented in Fig. 7, where 
(Q/Qo)p is plotted as a function of Re. As seen in the figure, the results 
separate themselves into three groups depending on the heat ex
changer length X/H. Within each group, the curves are parameterized 
by the plate length to spacing ratio L/H. 

The successful attainment of heat transfer augmentation is signaled 
by values of (Q/Q0)p greater than one. From Fig. 7, it is seen that for 
interrupted-wall channels, augmentation can be achieved over a broad 
spectrum of operating conditions. The augmentation is greatest for 
relatively short heat exchanger lengths and at higher Reynolds 
numbers. Thus, for a heat exchanger characterized by X/H = 20, 
values of (Q/Qo)p of 1.5 and greater are attained over a wide range of 
Reynolds numbers. On the other hand, for X/H = 100, heat transfer 
augmentation is achieved only for Re > ~700. 

The attainment of augmentation for relatively short channels and 
high Reynolds numbers is related to the fact that the local wall-to-
bulk temperature differences tend to be relatively large for either of 
these conditions. Consequently, the higher heat transfer coefficients 
that are present in an interrupted-wall channel are able to serve with 
good effect in increasing the rates of heat transfer. On the other hand, 
when the local wall-to-bulk temperature differences are small (long 
channels and/or low Reynolds numbers), the high heat transfer 
coefficients are not very effective. 

The plate length to spacing ratio L/H has only a modest effect on 
the (Q/Qo)p results, except for short channels. This is because for 
intermediate and long channels, the number of plates N = (X/H) 
(H/L) is appreciable for all the L/H values considered. However, for 
a relatively short channel such as X/H = 20, the number of plates 
ranges from 4 to 100 as L/H is varied from 5 to 0.2. It is plausible that 
such a difference in the number of plates should affect the results. 

As a note of qualification, it should be reiterated that the numerical 
results of Fig. 7 were evaluated from solutions for isothermal plate 
segments. The extent to which the results will be altered by other 
thermal boundary conditions is uncertain. 

Fully Developed Flow and Heat Transfer . In conventional 
ducts, fully developed flow and heat transfer are, respectively, defined 
by the conditions 

u ^ function of x (11) 

(T - Tw)/(Tb ~ TJ ^ function of x (12) 

As corollaries to equations (11) and (12), the friction factor and the 
heat transfer coefficient are independent of *. 
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Re?rl(L/H) 

Table 1 Fully developed Nusselt numbers (equation (14)) 

28 70 140 280 560 1400 2800 5600 

Nu n 13.91 17.49 19.69 21.72 23.48 25.38 26.54 27.54 

In an interrupted-wall channel, fully developed conditions as de
fined by equations (11) and (12) do not exist. The boundary layer 
development that occurs on each plate of the array gives rise to in
dependent velocity and temperature fields which violate these defi
nitions. Instead, as will now be illustrated, a different type of fully 
developed regime is encountered at sufficiently large downstream 
distances in an interrupted-wall channel. Specifically, at streamwise 
locations x, (x + 2L), (x + 4L), . . . in the fully developed regime, 
identical velocity profiles are encountered. Similarly, the distributions 
of (T - Tw)/(Tb - Tw) are the same at x, (x + 2L), (x + 4L) 
Furthermore, the average heat transfer coefficient hp per plate seg
ment is constant for all plates in the fully developed regime. 

With respect to hp, let Qp denote the rate of heat transfer per plate 
and let (Tw - Tb)' and (Tw - Tb)", respectively, represent the wall-
to-bulk temperature differences at the beginning and end of the plate. 
Then, 

QP/A 

LMTD of (Tw - Tb)' and (Tw - Tb)» 
(13) 

where LMTD is the log-mean temperature difference. With this 
definition, it can be shown that the Nusselt number is expressible 
as 

NuD 
hp(4H) RePr , (T„ 

•In 
-Tb)' 

L/H (Tm - Tb)" 
(14) 

From the numerical evaluation of equation (14), it was found that 
the fully developed Nusselt number depends on the group Re/(L/H) 
rather than separately on Re and (L/H). Table 1 gives representative 
values of the Nusselt number for the range of RePr/(L/H) of the 
solutions (which were performed for Pr = 0.7). The tabulated results 
are substantially higher than the value of 7.54 for a parallel plate 
channel. 

The attainment of fully developed velocity and temperature profiles 
is illustrated in Figs. 8 and 9 for an interrupted-wall channel with L/H 

• = 1. The figures correspond to Re = 1600 and 200, respectively. In the 
lower part of each figure, there is a pair of graphs (placed side by side) 
showing the development of the velocity distribution u/u. The pair 
of graphs in the upper part of each figure depicts the corresponding 

development of the dimensionless temperature distribution (T — 
Tw)/(Tb — Tm), The curves in the left-hand graphs are for x/L = 0, 
2, 4 , . . . and correspond to the trailing edges of plates 2,4 Those 
in the right-hand graph are for x/L = 1, 3, 5,. . . and correspond to the 
trailing edges of plates 1, 3, 5 

Inspection of Fig. 8 shows that the profiles at x/L, (x/L + 2), (x/L 
+ 4), . . . undergo a development in the initial portion of the channel 
and ultimately attain a shape which is independent of x. This indi
cates the existence of a periodic fully developed regime. We have 
verified that a fully developed regime of this type exists at all stations 
between the leading and trailing edges of the plates, with fully de
veloped profiles that are specific to each station. Fig. 9 confirms the 
findings of Fig. 8 and also illustrates the significant effect of the 
Reynolds number. By comparing these figures, it is seen that the 
development length is markedly decreased as the Reynolds number 
decreases. 

These figures also enable an assessment of the readjustment of 
profiles which occurs due to the interruption of the channel wall. As 
an example, consider the u/u profile for x/L = 1 shown at the lower 
right of Fig. 8 and note that the velocities near y/H = 1 are very small. 
On the other hand, in the u/u profile for x/L = 2, the velocities near 
y/H = 1 are quite large, thereby reflecting the readjustment that has 
taken place owing to the interruption of the wall between plates 1 and 
3. The revitalized velocity field near y/H = 1 drives the boundary layer 
development on plate 3. 

Concluding Remarks and Comparisons With 
Experiment 

The results of the present investigation, as given in Figs. 2-6, enable 
the evaluation of the heat transfer and fluid flow performance of 
laminar heat exchangers made up of interrupted-wall channels. These 
results were employed to compare the heat transfer rates in heat ex
changers composed either of interrupted-wall channels or of parallel 
plate channels. For conditions of equal heat transfer surface area and 
equal pumping power, appreciably higher transfer rates prevailed in 
the interrupted-wall heat exchanger for a wide range of operating 
conditions. The heat transfer augmentation was especially marked 
for relatively short heat exchanger channels and at higher Reynolds 
numbers. 

& 

o // ^ S a = 5 = ^ 

" X/L= / " " " " " ^ ^ 
0 f ^ " ^ — a , 

f / 4 , CO 

=A—**co ^ v V 

5 N V D 

1 -"• K C 3 

|Re = 200 | \ 

0 0.2 0.4 0.6 O.e 

y/H 0.4 0.6 0.8 1.0 

y/H 

Fig. 8 Developing and fully developed velocity and temperature profiles, Fig. 9 Developing and fully developed velocity and temperature profiles, 
L/H = 1 and Re = 1600 L/H = 1 and Re = 200 
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The results also demonstrated the existence of a new type of fully 
developed regime. At sufficiently large downstream distances, the 
velocity profiles at x, (x + 2L), (x + 4 L ) , . . . are identical, as are the 
dimensionless temperature profiles (T — Tw)/(Th — Tw). In addition, 
the average heat transfer coefficient per plate is constant for all plates 
in the fully developed regime. 

It is relevant to compare the present analytical predictions with 
representative experimental results. For this comparison, the liter
ature was searched for experiments where the span of the plates 
(normal to the plane of Fig. 1) was on the order of (or greater than) 
ten times the transverse spacing H. Three cases were found which 
fulfilled this criterion. Of these, the tests of London and Shah's core 
103 [9] extended to lower Reynolds numbers than the others, and this 
case was, therefore, chosen for the comparison. 

In Fig. 5 of [9], the overall heat transfer and pressure drop results 
for core 103, respectively, expressed as the Colburn factor; and the 
friction factor /, are plotted on log-log paper as a function of a hy
draulic-diameter Reynolds number NR. The low Reynolds number 
results are well represented by straight lines, from which the data 
begin to deviate at about NR = 900. The predictions of the present 
analysis for the overall heat transfer and pressure drop corresponding 
to the geometrical parameters of core 103 were recast in terms of j and 
/ versus NR (the heat transfer coefficient is based on the log-mean 
temperature difference). These analytical results are well represented 
b y ; = 3.92 NR'0™2 a n d / = 9.60 NR-0"192. 

When these lines are plotted in Fig. 5 of [9], it is seen that in the 
range of NR up to 900, the present heat transfer predictions lie above 
the data by 20-35 percent, whereas the / predictions lie below the data 
by 10-20 percent. This finding suggests that the bent and scarfed 
edges of the plates may have taken a toll in pressure drop while the 
heat transfer is reduced owing to the disturbance of the thin laminar 
boundary layers that are responsible for the augmentation. Another 
relevant factor in the deviations between analysis and experiment is 
the finite plate thickness, which can cause flow separation at the 
trailing edge and, perhaps, also at the leading edge. 
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APPENDIX 

T r e a t m e n t of the P r e s s u r e G r a d i e n t dp/dx 
The unknown pressure gradient dp/dx appears in the x -direction 

momentum equation. The implicit finite difference form of this 
equation can be written as 

ami = biUi+i + CiUi-i + dt + ei(dp/dx) (A-1) 

for i = 1, 2, 3 , . . . N, with a = 0 and bN = 0. 

Here, the subscript i denotes a grid location in the cross-stream 
direction; each value of i corresponds to a fixed value of a>, the di
mensionless stream function. From the definition of w, we can deduce 
that 

Ofc - M \ (pu)~xdo> = yE-y{ (A-2) 
Jo 

where the subscripts / and E denote the two edges of the boundary 
layer, ( fe — ifc) is the stream function difference across the layer, and 
yE — yi is the thickness of the layer. (Here, we have, for convenience, 
restricted our attention to a plane flow. The extension of the method 
to axisymmetric situations is straightforward.) 

For a confined flow in a known geometry, the value of (ys — y/) at 
a given value of x is known. Then, equation (A-2) represents an ad
ditional constraint on the values of u and enables us to arrive at the 
appropriate value of dp/dx. The discretized form of equation (A-2) 
can be expressed as 

£ him = M (A-3) 
;=i 

where /,• contains the u increment and the local value of p, while M 
is the known quantity (ys — y/)l{<pE - <fr/). 

The calculation procedure outlined below is an iterative solution 
of equations (A-1) and (A-3) for the u's and dp/dx as unknowns. The 
iteration algorithm can be interpreted as an adaptation of the New-
ton-Raphson procedure. The convergence has been found to be very 
rapid; within two or three iterations, the values of u cease to change 
for at least six significant figures. This procedure eliminates the ar
bitrariness and the resultant inaccuracy of the confined-flow pro
cedure described in [4]. 

We manipulate equation (A-1) along the lines of the tri-diagonal-
matrix algorithm. We first seek the transformation 

m = Piui+l + Qi + Ri{dp/dx) (A-4) 

where Pi, Qi, and ft; are given by the recurrence relations 

Pi = 6;/(a; - c-Pi-i) | 

Qi = (dL + aQi-i)/{ai - aPi-i) \ 

Ri =- (e,- + CiRi-i)/(ai - c,-P;-i) ] 

The recurrence procedure is started using 

Pi = bi/ai , Qi = di/ah R1 = ex/a1 (A-6) 

Since bfj = 0, it follows that PJV = 0, and this leads us to the second 
transformation 

ui = Ai + Bi(dp/dx) (A-7) 

where 

AN = QN, and BN = RN (A-8) 
and the other A's and B's are given by the recurrence relations 

Bi = Ri + PiBi+J 

Equation (A-7) expresses u,- in terms of dp/dx. If we substitute this 
relation into equation (A-3), we get an equation with dp/dx as the only 
unknown. This equation is not linear and is, therefore, solved by the 
following iteration algorithm. 

(dp/dx)new = (dp/dx)M + (Si - M)/Su 

where 

Si^Zfil(Ai + Bi(dp/dx)old) 

and 

10 / FEBRUARY 1977 Transactions of the ASME 

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



N (ii) Obtain Pi, Qi,i?i using equations (A-6) and (A-5). 
" = , ? ! >iBif(Ai + Bi(dp/dx)M)2 (A-10) ( i i i ) F i n a l l y > c a l c u l a te A>, Bi using equations (A-8) and (A-9). 

(iv) Starting with a guess value of (dp/dx) (such as the value of 
Summary of the Procedure dp/dx in the last forward step), use the iteration algorithm (A-10) 
(i) Calculate the coefficients a,-, &;, c„ d;, and e, in the momentum until satisfactory convergence, 

equation (A-l). (v) Use equation (A-7) to find the values of u,-. 
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Turbulent Heat Transfer Studies in 
Annulus With Inner Cylinder 
Rotation 
Experimental investigations of turbulent heat transfer are made in a large-gap annulus 
with both 7-otating and nonrotating inner cylinder. The vertical annular channel has an 
electrically heated outer wall; the inner wall is thermally and electrically insulated. The 
axial air flow is allowed to develop before rotation and heating are imparted. The result
ing temperature fields are investigated using thermocouple probes located near the chan
nel exit. The wall heat flux, wall axial temperature development, and radial temperature 
profiles are measured. For each axial Reynolds number, three heat flux rates are used. 
Excellent correlation is established between rotational and nonrotational Nusselt num
ber. The proper correlation parameter is a physical quantity characterizing the flow helix. 
This parameter is the inverse of the ratio of axial travel of the flow helix in terms of hy
draulic diameter, per half revolution of the spinning wall. 

Introduction 

Several forms of rotating flows present themselves in chemical and 
mechanical mixing and separation devices, electrical and turboma-
chinery, combustion chambers, pollution control devices, swirl nozzles, 
rocketry, fusion reactors, and in atmospheric and geophysical phe
nomena. Rotation of the flow in these examples can be induced 
through boundary motion, as an initial swirl, or through the action 
of a body force field. The basic aim of this study has been to obtain 
reliable experimental data on heat transfer in a well-controlled, 
boundary-induced, helical flow field. For this purpose, a concentric, 
vertical, annular geometry was chosen. The flow geometry is shown 
in Fig. 1. The adiabatic inner cylinder was rotated and the outer, 
stationary boundary was heated with a uniform heat flux. The air flow 
in the test section attained full- development in both velocity and 
temperature after certain lengths. 

The governing equations for the rotational flow in the annulus are 
examined and nondimensionalized in order to identify the pertinent 
parameters. It is through this process that the appropriate physical 
parameter was found that unifies the axial and tangential swirl flow 
case (mixed mode) Nusselt numbers along with the case of pure axial 
flow. 

The governing time-averaged equations for mass conservation, for 
the three momentum equations and finally for the energy balance in 
cylindrical polar coordinates are written in the following for axial-
symmetry and with five additional assumptions. These assumptions 
are: 

1 Density fluctuations caused by pressure differences, or else by 
thermal expansion or its cross correlations are assumed to be negli
gible. 

2 M, k, Cp property fluctuations are negligible. 
3 Pressure fluctuations are negligible. 
4 Body forces acting on fluid particles are negligible except the 

centrifugal force. 
5 Variations in the axial direction of mean values are assumed to 

be small compared with the corresponding variations in the radial 
direction. 

The governing equations are nondimensionalized using the fol
lowing definitions: 

r - P 
R P

 PVT
2 

u _t u' 

VT " ~ Vr 

z 
z — — 

L V 

v = — 
VT 

T = TITR 

v' 
v = — 

VT 

Contributed by the Heat Transfer Division and presented at the Winter 
Annual Meeting, Houston, Texas, November 30-December 5, 1975, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Revised manu
script received by the Heat Transfer Division, September 21,1976. Paper No. 
75-WA/HT-55. 

w = w' = (1) 

The surface velocity of the rotating shaft is chosen for the nor
malization of the mean and fluctuating components of the radial ve
locity, as well as for the static pressure. This choice is proper because 
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Radial Momentum Equation. 

Fig. 1 The coordinate system 

of the resulting helical flow in the test section with inner shaft rota
tion. 

The resulting expressions are written out in the following. Di-
mensionless parameters are arranged in groups and bars are omitted 
from the nondimensional quantities for convenience. 

Continuity Equation. 

1 d RUM /dw\ 
(ru) -\ ( — 1 = 0 

rdr LVT\dz/ 
(2) 

r 

dp 
(3) 

Tangential Momentum Equation. 

dv R UM dv uv 
u 1 w 1 

dr L VT dz r 
i i d r 3<9 ,v\-\ i a 

RVTr2drl dr\r/l r2 dr 
) (4) 

Axial Momentum Equation. 

dw RUM dw UMR /Vr\2dp 
u—-H w — = ( I — 

dr LVT dz VTL \UM/ dz 

1 x d , -r-r H vruw 
VTR r dr 

•-•^-[ru'w'] (5) 
r dr 

Energy Equation. 

dT 

dr 

RUM dT _ v 1 a / 1 

LVT
 W dz ~ RVrr dr \Pi RVT 

1 

Pr r dr ) 

d2T 

(VTUV)PV d2z r dr 

UM 2 v \(VT\2\.d (y\Y /^EVI 
•RVTRl\UM) I dr\r)\ + \dr) J 

VT
2 T dp ,R UM\ dpi 

+ \u — + I I w — 
CnRL dr \LVTJ dzi 

+ more terms of dissipation (6) 

Two new nondimensional groups in the equations are defined. For 
the mixed flow cases, the strength of rotation is identified by the ratio 
of tangential velocity on the surface of the rotating shaft to the mean 
axial velocity. This ratio (VT/UM) is called "the rotation ratio." The 
rotation parameter is the name given to the group 

R\UM/ 

Here, (L) and (R) are the unspecified characteristic dimensions of the 
test section. (L) is related to the peripheral velocity and (R) to the 
axial velocity. This reasoning is due to the fact that the tangential 
velocity initiates a helical flow in the test section. (L) is typically the 
pitch of the flow helix; (R) is typically the hydraulic diameter of the 
annulus. Therefore, the L/R ratio is a factor relating the characteristic 

(7) 

.Nomenclature* . 

b = gap ratio of annulus (R„ — Ri)/Ri 
Cp = specific heat of air at constant pres

sure 
D = test section tube diameter 
DH = hydraulic diameter = D0 — D, 
h = heat transfer coefficient 
k = thermal conductivity of air 
L = characteristic axial dimension of the 

annular channel in equations (2) through 
(6) 

N = rpm of the rotating inner cylinder 
Nu = Nusselt number = hDn/k 
Pr = molecular Prandtl number 
p = pressure 
q " = heat flux 
r = r(r, 0, z) the cylindrical coordinate sys

tem 
R = radius, also reference radial dimension 
Re = Reynolds number = UMDH/V 
S = RilR,, = Di/D0 radius ratio of annulus 

( = time in equation (9) 
T = temperature 
UM = mean axial velocity 
x = axial coordinate from the beginning of 

heating 
u, u,w = radial, tangential, and axial velocity 

components 
Vr = peripheral velocity of the rotating inner 

cylinder 

a = rotation parameter 
2 /DH\ /VT\ 

ir\Di) \UMf 

p = density 
f = VT/UM, the rotation ratio; ratio of the 

tangential velocity on the inner cylinder 
and the mean axial flow; the velocity 
ratio 

X = 1 + a2, a function of the rotation param
eter 

w = angular velocity of rotation 
<!> = dissipation terms 
0 = nondimensional temperature = 

T-T, ent 

Qaw"DH/k 

p. = molecular viscosity 

Subscripts and Superscripts 

b = bulk 
ent = entrance 
fd = fully developed 
i = inner 
io, oo = inner and outer diameters of the 

outer tube 
iw, ow = inner and outer wall 
1 = laminar 
M = mean 
o = outer, also straight flow case 
/• = radial direction 
R = reference 
T = total 
8 = in tangential direction 
0 = mixed mode flow case to include axial 

and tangential motion 
(') = fluctuating turbulent components 
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dimensions of the flow helix in the annulus. In the following, the L/ 
R(VT/UM) ratio is identified through a physical interpretation of this 
helical flow. 

The characteristic dimension of an annulus in straight flow is its 
hydraulic diameter which comes from the following arbitrary, but 
well-accepted definition 

Dh 
4 X Area : D0 - Di (8) 

wetted perimeter 

With rotation, the characteristic dimension changes since the flow 
is in a helical form and the wetted perimeter increases in direct pro
portion to the number of times the flow helix wraps around the walls. 
The straight flow case can be regarded as a limiting case of the helical 
flow, where the helical pitch is infinite since the flow helix tightness 
is zero. In the other extreme, in a circular flow, the helix pitch is zero 
and helix tightness is infinite. Between these extreme cases, the effect 
of flow helix can be accounted for by considering the number of hy
draulic diameters the flow requires per half revolution of the rotating 
surface. Here, one half of a revolution is taken since it is more repre
sentative of the helix pitch than the full revolution. This is calculated 
as follows 

y = t 
UM_ 

DH 

(9) 

Here, t is the time for the inner pipe to rotate one half revolution (t 
= 60/2JV s). Since N = 60/2x Vr/Ri, equation (9) becomes 

(10) Ri_U^ 
7 WDH VT 

The rotation parameter a is inverse of this ratio which is indicative 
of the tightness of the flow helix. Indeed, both the friction factor1 and 
the Nu with rotation were successfully correlated with "the rotation 
parameter." 

Previous Work. The straight axial flow with no boundary rotation 
and the inner cylinder rotation with no axial flow constitute the two 
limiting cases of annular flow heat transfer studies. There exists a 
large body of work in the literature associated with both categories. 
A representative list of the former category includes references 
[1-4].2 The last one, authored by Kays and Leung is perhaps the most 
comprehensive treatment of the straight annular flow heat transfer. 
In that work, the authors presented an analytic solution comple
mented by extensive experimental data. Also, an empirical relation
ship in the form Nu = 0.022 Re 0 8 Pr0-6 is proposed to fit the experi
mental data. 

Heat transfer in an annulus with inner cylinder rotation but in the 
absence of an axial "carrier" was studied in references [5-8]. These 
studies established the various possible flow regimes in the annulus 
and their stability limits as a function of the rotational Taylor number. 
Four flow regimes were recognized: laminar, laminar with Taylor 
vortices, turbulent with Taylor vortices and a fully turbulent regime. 
The heat transfer studies referenced previously spanned all four re
gimes. For the fully turbulent case, the Nu is correlated with the ro
tational Taylor number as follows [7]: 

Nu = 0.409 (Ta)„ (11) 

Here Ta is a modified Taylor number, the conventional rotational 
Taylor number divided by a complicated radius ratio geometric factor 
[5]. 

The mixed mode case with inner cylinder rotation in the presence 
of axial flow was first studied by Luke [9] in connection with the 
cooling of the electric motors. This work was later expanded by Gazley 
[10] who inferred from his data and those of Luke's, the form Nu ~ 
(Re)e//

0'8. In this relationship, the effective Re was constructed by 
an effective velocity defined as 

1 To be reported separately. 
2 Numbers in brackets designate References at end of paper. 
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Fig. 2 Schematic of test setup for annular flow with rotating inner bound
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Veff- ["-••(TTJ (12) 

Tachibana and Fukui [11] did similar work to Gazley's and, again, 
using Gazley's effective velocity for the narrow gap annulus offered 
a heat transfer correlation in the form: 

Nu = 0.015 ( ' • " T ) (A,/Di) 0-«(ReW- 8Pri / 3 (13) 

In this equation L is the test section length and the short test section 
used in the experiments warranted inclusion of the entrance ef
fects. 

Molozhen and Polyak [12] reviewed the work of references [9-11] 
along with Kosterin and Finatev's [13]. They proposed a lengthy ex
pression for Nusselt number which spans the two limiting cases of 
pure-rotational and pure-axial, fully turbulent heat transfer in annuli 
with arbitrary gap ratio. 

The present work [15] attempts to fill a gap in the annular flow heat 
transfer. This is the case of a wide-gap, long annular channel with 
moderate radius ratio for fully developed turbulent axial flow in the 
presence of inner cylinder rotation. The rotational speed is varied from 
zero to several times the mean axial velocity. 

The Experimental Apparatus 
A primary experimental objective was to produce a simple, ulti

mately predictable, temperature profile. This was achieved through 
uniform heating from one wall and insulating the outer wall. Then, 
the developed temperature profile has a linear axial dependence. 

The rotating inner pipe in the annulus was balanced dynamically 
to 3300 rpm. All of the experiments were conducted at two specific 
shaft speeds of 1500 and 2000 rpm. Therefore, the tangential velocity 
in the test section was preset and the rotation ratio could be changed 
by varying the axial Re. For the Re range mentioned previously, the 
rotation ratio varied from 0 to 2.8. 

The overall design of the experimental setup is shown schematically 
in Fig. 2. The apparatus consists of a tall structure of two concentric 
pipes, accommodated between two floors of the Mechanical Engi
neering Department at the University of Minnesota. The lower floor 
houses the air intake, blower, ASME metering orifice, ducting, the 
plenum chamber, the nonrotating initial section of the annulus, the 
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support tower, and the lubrication circuit for the lower bearing as
sembly of the rotating shaft. The upper room houses the actual 
measuring section, the drive shaft with a variable speed motor, lu
brication circuit for the drive shaft bearing blocks, and a heavy sup
porting structure to hold the assembly. 

Test Section. The test section consists of two vertically mounted 
concentric tubes. The outer one is made up in four sections, each 
91.4-cm long. The first section of the 4-piece outer tube is made of 
thick-walled steel pipe. It was honed inside to 177.9-mm ID and a 
193.7-mm OD. This section is different in material and wall thickness 
from the remaining three upper brass tube sections because this inlet 
section is not heated and it supports the weight of the upper three-
piece assembly. 

Near the upper end of the steel tube, four holes of 3.2-mm dia were 
drilled on 90-deg centers. These holes were used to accommodate pins 
for four concentricity vane spacers inserted between the nonrotating 
101.6-mm OD inner pipe and the 177.8-mm ID outer pipe. At the 
upper end of the pipe, the annulus concentricity is held within ±0.123 
mm over the nominal 177.8-mm ID. The remaining upper three sec
tions of the outer tube were all cut from a 366-cm long brass tube with 
177.8-mm nominal ID and 3.12-mm nominal wall thickness. Care was 
taken to assure a smooth and continuous outer wall. To this end the 
matching junctions were honed in assembly. 

The outer wall is fully instrumented with thermocouples, wall 
pressure taps, probe holes, heaters and miscellaneous items for the 
heater circuit. 

The substructure of the shaft was a 76.2-mm OD and 60.3-mm ID 
carbon steel pipe. It was round to within ±0.076 mm. The shaft was 
lined on the outside with 1.23-cm thick insulating Textolite sleeve over 
the lower 274.5 cm of its length. 

Main Heater'Construction. Uniform electrical heating is applied 
to the top three sections of the outer wall. Heat flux applied to such 
a thick wall tube with high thermal conductivity averages out within 
the tube wall. The primary heater was a 22.9-mm wide and 0.15-mm 
thick continuous stainless steel strip wound around the outer tube 
in a spiral, over an electrically insulating tape. The heater spiral was 
wound with 2.5-mm gap between the successive helixes. In reference 
[14] an analysis is given on the effect of heater spacing on the uni
formity of heating. The 2.5-mm spacing is well within the allowable 
range in order not to disturb uniformity of the heating on the flow side 
of the thick-walled tube. 

A 25.4-mm wide fiberglass self-adhesive tape was wound around 
the bare tubes without any overlap so that structural, as well as 
thermal uniformity was maintained. Finally, the stainless steel heater 
strip was laid over the fiberglass tape, expoxied in place, and covered 
with another layer of the same tape. The outer tube had 7.6-cm wide 
guard heaters at each end. Each guard heater had 13% revolutions of 
3.2-mm wide heater strip again with the same gap as the main heat
ers. 

The measurement technique for power input to the main and guard 
heaters was the same, d-c electric current was read over calibrated 
shunts. The main heater shunt was read on Leeds Northrup K-3 
Model Potentiometer. 

Thermocouple Circuit. Thermocouples in the test section are 
all 30 WG copper-constantan. A total of 82 thermocouples were placed 
in between the heater strips. When the thermocouples are attached 
to the outside of the tube, the inner wall temperature may be calcu
lated from the following formula: 

Tio = T00 - qw"RO0,kLn(Roo/Rio) (14) 

With the present configuration, this temperature difference is 
negligible (~0.5°C). 

Temperature Traverses. There are four probe access ports on 
the test section (Fig. 2). These are located 2, 3, 5, and 8 DJJ from the 
flow exit plane. Surveys of the velocity were made at the uppermost 
two ports. No significant difference was observed between these 
measurements. All subsequent data were taken at the 3 DH port. 

The spherical temperature probe tip was made of a 0.25-mm dia 
copper constantan thermocouple. The tip diameter was 0.83 mm. 

Flow and Temperature Development Length. There is general 
agreement among researchers that tripped turbulent, straight flow 
in an annulus will develop within 15-30 hydraulic dia. With mixed-
mode flows there is no available information. The overall test section 
length is 51' DH- A three DH length is provided by the plexiglass en
trance sleeve and 15 DH is occupied by the nonrotating lower section. 
The flow is tripped 51 mm inside the entrance by a 7-mm thick, 4-mm 
hexagonal aluminum honeycomb. 

The rotating portion of the annular test section begins after the 
stationary 15 DH long flow passage. The rotational portion is also the 
heated part of the test section. Consequently, the temperature and 
the tangential velocity profiles have 36 DH for their development 
lengths, while the axial flow has a total of 51 D#. 

E x p e r i m e n t a l P r o c e d u r e 
One complete set of temperature tests required three runs: pure 

axial flow and the rotational cases of 1500 and 2000 rpm. In special 
cases, runs were also taken at additional rpm, such as 1750, 2200, and 
2400. 

In each set of tests, air mass flow and the heating rate were held 
constant (three heating rates were applied for each axial Reynolds 
number). Generally speaking, in these tests, the "high," "medium," 
and "low" heating rates imply a bulk temperature rise of 12.8-15, 
7.2-8.9, and 2.8-4.5°C, respectively. 

Data Reduction for the Temperature Measurements. The 
overall method of data reduction in the tests is as follows: 

1 Identify the thermocouples along the same generatrix of the 
outer tube and fit least square curves, up to second degree, to their 
data. 

2 Calculate mass flow rate, Re and the rotation ratio. Test section 
temperature for Re calculations was taken to be the bulk temperature 
calculated from: 

Tb = Tent + --) x (15) 
dx/fd 

(dT/dx)fd is the gradient calculated from curve fits to the wall axial 
temperature data computed. 

3 In the heater resistor calculations, the resistance of each loop 
of the heater helix was evaluated from the calibration using the local 
temperature computed from the curve fit to the axial wall temperature 
distribution. Then, the average heat flux was determined as fol
lows: 

Area is the outer wall surface area under the main heater, I is the 
electric current read over the calibrated shunt circuit. 

4 Compute bulk temperature rise by overall energy balance. 

Q" Total = ir(DJ - Di2)pUMCp(Tb - Tent)/4 (17) 

dT=dT\ =Tb- Tenl 

dx dxl b L 

The bulk temperature gradient obtained in this manner is superior 
to the method described previously in item 2 due to the inevitable 
scatter in the wall measured temperature data as exemplified in Fig. 
3. 

5 Evaluate the net wall heat flux by estimating the heat losses. 
For heat losses directed inward the conduction heat transfer is neg
ligible for the experimental range of the Reynolds numbers. Radiation 
exchange was 3-5 percent of the wall heat flux. For the lowest Rey
nolds numbers, the local free convection heat loss amounts to maxi
mum 8 percent of the wall heat flux in the test section. 

Combined conduction heat losses to outside and the convection-
radiation heat losses to inside vary from a low of 5 percent to a high 
of 25 percent. For the majority of runs they fall between 12 and 14 
percent. This loss is due mainly to a conduction heat loss through the 
2.5 cm-thick fiberglass insulation. 

6 Obtain local (h), and local (Nu) through their definitions. 
Nondimensionalize the test section and the wall temperatures using 
the definition 
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This form of nondimensionalizing of the temperature is appropriate 
for the constant heat flux boundary condition. The entrance tem
perature and the heat flux are the two primary experimental variables 
controlled during the tests. The form of the normalized temperatures 
eliminate these two variables as separate parameters to be consid
ered. 

R e s u l t s a n d D i s c u s s i o n 
Wall Temperature Distribution. Some sample results for the 

test section inner wall temperature distribution are plotted in Fig. 
3.3 The outer wall of the test section was heated electrically with a 
uniform heat flux. With this kind of heating, wall temperature attains 
a linear rise upon full development. The initial region has a parabolic 
rise. This character is well demonstrated in the following graphs; 
particularly in the pure axial flow cases. Results are plotted for the 
readings by 45 thermocouples located along the same generatrix of 
the outer cylinder. 

The shape of the wall temperature curve for the pure axial flow 
shows that the test section attained full thermal development for all 
the heat flux rates studied. With imposition of rotation, wall tem
perature diminishes. As f decreases, rotational curves approach the 
nonrotational curve although the effect is still noticeable in the plots 
where f is as low as 0.56. 

When f is large (around 2 or more) initially a local peaking occurs 
in the axial wall temperature distribution. The axial location of the 
peak is 6-8 DH from the beginning of heating and rotation. The reason 
for the peak and subsequent dip is unknown. The peaking may be due 
to final development of the velocity field following rotation imparted 
on it at x/DH = 0. If this is so, the flow field with rotation becomes 
developed in about 16 hydraulic dia. This figure is inferred from ob
servations of the wall temperature curves with rotation. Finally, 
rotation caused an upward wiggle in the axial temperature profile near 
the end of the test section. This is particularly noticeable at higher 
fs. This is an exit effect where the flow field is modified due to exit. 
The upward turn of the curve indicates a weakened rotational effect 
near the exit. An annular jet of air expands-at the exit with the result 
that the rotation decays are felt upstream of the exit. 

Radial Temperature Profiles. Samples of the measured radial 
temperature profiles are presented in Figs. 4 and 5. Radial tempera
tures are normalized using the same form as equation (19). The outer 
wall temperature shown in the plots are the computed inner wall 
temperature of the test section outer wall. The temperature profiles 
are very smooth. The curves are aligned in an orderly manner in 
passing from the uniform heat flux outer boundary to the adiabatic 
inner boundary. There is a large decrease of temperature near the 
outer wall. The profiles are strongly modified with inner cylinder 
rotation. The outer wall temperature drops sharply; then the profile 
continues toward the adiabatic inner wall with a slope gentler than 
the nonrotating case. The rotating profiles are appreciably flattened. 
With increased rotation, the inner boundary temperature increases. 
However, this "temperature recovery-like" effect does not change the 
nature of the inner boundary condition which is still an adiabatic 
wall. 

The enhanced mixing due to flow rotation is suspected to be mainly 
responsible for the overall changes of the radial temperature profile 
in the test section. Near the inner wall, dissipation and increased 
turbulent mixing are both valid mechanisms to influence the profiles. 

3 At this point it is appropriate to assert that in the graphical representation 
of the data for the mixed flow cases, the rotation ratio f rather than the rotation 
parameter a, is preferred to indicate the relative strength of the rotation. First, 
the two parameters differ only by a constant factor (« = constant • f). Second, 
and more importantly, f is more directly indicative of the relative strength of 
the rotation i.e., the inner cylinder peripheral velocity being significantly higher 
or lower than the mean axial velocity in the annulus. 

- 1 1 1 1 1 1 r 

RUN* Re t = V U M 

0 5 10 15 20 25 30 35 
X/DH 

Fig. 3 Axial wall temperature profiles 

Unfortunately, we do not have, as yet, turbulence data to assess the 
magnitudes of the velocity and temperature cross-correlations near 
the boundaries to understand the transfer mechanism involved. 

The cross-over point of the radial temperature profiles in the test 
section also raises an interesting point. The cross-over point for the 
profiles is near the region of maximum axial velocity. This can be 
observed in most of the Figs. 4 and 5. A possible explanation may again 
be due to the u'T' correlations under the influence of the centrifugal 
forces of rotation. 

Axial Nusselt Number Distribution. Plots of axial Nusselt 
numbers are relevant since they provide an additional check on the 
attainment of thermal development in the test section. Axial Nusselt 
numbers are presented in Figs. 6 and 7 for the pure axial flow and 2000 
rpm mixed-mode cases. Nusselt number plots verify that there is 
complete thermal development in the test section. In fact, thermal 
development was attained within 18 to 20 Du when the local Nu was 
within 5 percent of the asymptotic value. 

Fully Developed Nusselt Numbers. Experimental data for Nu0 

are shown in Fig. 8. Measurements of four other investigators are also 
shown on the same graph. There is reasonable agreement among all 
these results. Although air is used as the working fluid in all these 
experiments, the radius ratios of the test setups are not identical. Also 
shown in this figure is the conventional empirical relationship for 
Nu-Re. 
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In Fig. 9 the mixed-mode, fully developed Nu numbers are nondi-
mensionalized with respect to pure axial flow Nusselt numbers (Nu„). 
In the figure the high, medium, and low heat fluxes correspond to 
three runs at the same axial Re. Pig. 9 demonstrates the increased heat 
transfer from the outer wall in the mixed-mode flow cases. The trend 
is a nearly parabolic rise of Nu with f. In Fig. 10 all Nu data are re-
plotted against Re to demonstrate effect of rotation in another 
manner. Open circles are the data points corresponding to mixed 
mode case. At a fixed Re, Nu increases with increasing f. Effect of f 
on the Nu is particularly strong at lower Reynolds numbers. Effect 
becomes negligible above Re = 50,000 for the highest rotation used 
in the present tests. The same experimental points are compared with 
the limited available data from other experimenters in Fig. 11. Apart 
from the effect of different radius ratio of the annuli, there is sub
stantial agreement in the measurements. (Luke and Gazley's studies 
are for heat transfer from the inner cylinder.) An interesting point 
revealed in Fig. 11 is that rotation of the inner cylinder does not sig
nificantly affect Nu until the rotation ratio reaches a value about f 
= 0.8. This may be the reason why investigators [11] chose to separate 
their heat transfer data in two regions: f < 1.1 and f > 1.1 for the 
heated helical flow in a narrow gap annulus. 

A single correlation developed in reference [15] is (Fig. 12). 

Nu0 

N u 0 ' 
[(1 + « 2 ) ] a 8 7 1 4 

(17) 

The data deviate from this correlation curve by a maximum of 11 
percent. Of the 44 total data points used in correlations, there are only 
4 points with deviations over 10 percent. Most points deviate under 
±5 percent. 

Conclusions 
Inner pipe rotation in annular flow produces significant effects on 
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turbulent temperature field. These effects are easier to detect and 
measure when the rotation ratio f = VT/UM is larger than unity. In 
this study the rotation ratio varied between 0 and 2.80. 

With inner cylinder rotation the temperature profile attained full 
development within, the available 36 hydraulic dia length (possibly 
as short as 25 DR) following the start of rotation and heating. 

The primary effect of inner cylinder rotation was a flattening of the 
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radial temperature profiles over a large portion of the cross section. 
The temperature profile changed in the following manner: near the 
outer wall, which was a uniform heat flux boundary, temperatures 
were decreased resulting in steeper gradients; near the inner wall, 
which was an adiabatic boundary, the temperature profile still pre
served its adiabatic character except that temperatures were in
creased, showing a temperature recovery-like effect. 

A physical parameter was adopted that correlates the mixed-mode 
friction coefficient and Nusselt number data using the normal pure 
axial flow relations. This parameter is 2/w Dn/Di VT/UM which is 
called the rotation parameter. It corresponds to inverse of the axial 
travel of the flow helix in terms of significant dimension of the flow 
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Fig. 12 Correlation of the fully developed Nusselt number with rotation pa
rameter 

geomet ry (DH) per half revolut ion of t h e inner cylinder. W i t h th i s 

p a r a m e t e r , t h e cor re la ted form of t h e Nusse l t n u m b e r is as follows: 

Nu 
Nu, 

!* = [1 + /2DH y-zyi08 
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A Solution of Freezing of Liquids of 
Low Prandtl Number in Turbulent 
Flow Between Parallel Plates 
The steady-state freezing of liquids of low Prandtl number in turbulent flow between par
allel plates, the walls of which are kept at uniform temperature lower than the freezing 
temperature of the liquid, is solved by matched asymptotic technique. The location of the 
liquid-solid interface and the heat transfer rate are established as a function of the axial 
position along the channel. 

I n t r o d u c t i o n 

Only a limited amount of research has been done on the subject 
of phase change involving freezing of liquids flowing inside ducts; this 
is due to the difficulty arising from the influence of the flow field on 
the thermal behavior of the liquid phase. Therefore, various ap
proximate procedures have appeared in the literature in recent years. 
The first significant work on this subject was reported by Zerkle and 
Sunderland [l]1 for the case of steady-state laminar flow inside cir
cular tubes with solidification. This work was later extended by Des 
Ruisseaux and Zerkle [2] to study the parameters needed for the es
tablishment of steady state conditions, and by Zerkle [3] to investigate 
the effects of external insulation on freezing. Ozisjk and Mulligan [4] 
considered the transient freezing of a liquid flowing under laminar 
flow conditions in circular tubes. A variational method of solution used 
by Bilenas and Jiji [5] for the investigation of the same problem was 
in good agreement with the results obtained by Ozi§ik and Mulligan 
[4]. Recently Lock and Nyren [6] applied a perturbation technique 
to study freezing inside circular tubes. 

The problem of internal freezing under turbulent flow conditions 
is even more involved than that of corresponding laminar because of 
the complicated transport mechanisms. In the present study we utilize 
the analysis developed previously by Shibani and Ozisik [7] to treat 
the heat transfer to turbulent flow between parallel plates by the 
matched asymptotic technique. The results are applicable for liquids 
with low Prandtl number, that is for liquid metals. 

Analysis 
Consider the freezing of an incompressible liquid flowing in steady, 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
June 8,1976. 

fully developed, turbulent flow between two smooth, straight parallel 
plates with the walls kept at a uniform temperature T\ which is lower 
than the liquid freezing temperature T/. The liquid enters the conduit 
at a uniform and constant temperature To which is greater than Tf. 
As the liquid flows through, a freeze layer is formed on the inside 
surface of the wall with thickness increasing along the x-axes as il
lustrated in Fig. 1. In developing the mathematical model for the 
analysis it is assumed that the physical properties at each phase re
main constant, the problem possesses symmetry about the axial plane, 
the flow is fully developed, the liquid-solid interface is at the freezing 
temperature and the axial heat conduction is negligible. The last as
sumption for the liquid phase is valid for Pe > 100. Then, the energy 
equation for the liquid phase is taken as 

ox dy L dy L dy J 

subject to the boundary conditions 

0<y <B, x>0 (la) 

Te(y,0) = To, Te(b,x) = Tf, 
dTAO.x) 

= 0 (16) 

The fully developed flow assumption considered in the above for
mulation is not strictly justified because the flow channel has a vari-

Fig. 1 The coordinate system for freezing of liquid inside parallel plates. 
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able cross-sectional area and consequently du/dx ^ 0 and o ^ O , 
Therefore, ignoring the term v dTt/dy in the energy equation (la) 
needs some justification. If the velocity component v (x,y) is related 
to u(x, y) by the integration of the continuity equation and the axial 
velocity profile is represented by a power-law in the form u{x, y) = 
Cum(h/S) [1 - (y/&)]1/m, it can be shown that in equation (la) the 
term v dTe/dy can be neglected in comparison to the term u dT(/dx 
when (dTe/dx) » (db/dx) (dTe/dy). Clearly, this condition is valid 
so long as the profile of the freeze layer 6(x) remains a slowly varying 
function of the position. 

The equation for the solid phase is taken as 

d2T„ 

with the boundary conditions 

= 0, in 5 < y < h, x>0 

Ts(h,x) = T1 and Ts(5,x) = Tf 

(2a) 

(26) 

The foregoing two equations are coupled with the energy balance 
equation at the liquid-solid interface given as 

, dTt(S,x) , dTs(5,x) 
kg ; = ka ' (3) 

dy ' dy 

Here, x and y are the axial and transverse coordinates, u is the axial 
velocity, Te and Ts are the temperatures of the liquid and solid phases, 
a and c// are the molecular and eddy diffusivities of heat, ke and k„ 
are the thermal conductivities of the liquid and the solid, respec
tively. 

The foregoing equations are now expressed in a dimensionless form. 
Equations (1) for the liquid phase become 

. dde d 
- — i e i n i 

dr,. 
MOHv) 

dt; d-q 

Mf, 1) = 0, 

[<] 
MO, v) = i 

in 0 < i) < 1, 

3MI, 0) 

A| 
= 0 

£ > 0 (4a) 

(46) 

Equations (2) for the solid phase become 

d% 
= 0 , in 1 < 7/ < 1/A, £ > 0 

dr,2 

with the boundary conditions 

Ml /A,£) = 0i and Ml,?) = 0 

(5a) 

(56) 

And the liquid-solid interface equation (3) becomes 

3 M 1 , k) ^ ks 30,(1, J) 

dy ke d-q 

where various dimensionless variables are defined as 

y . . & 

(6) 

A = -
5 h 

Te-T, 
— '-, 0, 
T0-Tf 

16% 

cDePr • Re' 

*(v) = • 
a 

_TS-Tf 

T0 - Tf 

De = 4h, 

Pr ( v'' 

Ti-Tf 
0 i = — L 

To-Tf 

l + m 
c = 

m 

(7a) 

(76) 

(7c) 

fin) - r,W" ( l - u ) (Id) 

where um is the bulk mean velocity. The values of the exponent m for 
the power law velocity depend on the Reynolds number and the total 
diffusivity of heat e(i,) varies with the distance from the wall, Reynolds 
and Prandtl numbers; both m and <F(T;) are computed as described in 
references [7, 8]. A brief explanation of the determination of e(?j) is 
given in the Appendix. In computing «(»;) it is assumed that the tur
bulence itself is unaffected by the curved interface position 5(x) be
cause of the assumption that &(x) is a slowly varying function of po
sition. The quantity (1/6) (db/dx) characterizes the fractional change 
of the flow channel width in the direction of flow, consequently, the 
variation of the flow passage area is considered small so long as this 
term remains small. In the present analysis a power-law velocity 
profile is used for the energy equation, it is shown in reference [7] that 
the heat transfer results obtained from the solution of the energy 
equation by using a power law velocity profile are in close agreement 
with those obtained by using the usual logarithmic velocity profile. 

Appropriate eigenvalue problem for the solution of equation (4a) 
is given as 

dHn(v)~ 

d-q I 

subject to the boundary conditions 

f U j ^ l + X^Wtf,,): 
drt L dq J 

0 (8a) 

if'(0) = 0, H(1) = 0 (86) 

with the normalizing condition taken as 

H(0) = 1 (8c) 

where Hn and X„ are the eigenfunctions and eigenvalues, respectively, 
and the prime denotes differentiation with respect to r,. 

.Nomenclature-

An = constant defined by equation (12) 
c = constant defined by equation (7c) 
c' = specific heat 
De = Ah = equivalent diameter 

u 
/(?;) = = dimensionless velocity defined 

cum 

by equation (Id) 
Fn = constant defined by equation (10) 
G = constant defined by equation (186) 
h = one-half the distance between the 

plates 
Hn = the nth eigenfunction 
k = thermal conductivity 
m = exponent in the power law velocity 

Pr = — = Prandtl number 

Pr t = — = turbulent Prandtl number 

q = heat transfer rate per unit width of the 
plates 

Q = dimensionless heat transfer rate defined 
by equation (136) 

Deum 
Re - = Reynolds number 

T = temperature 
To = temperature at the inlet (x = 0) 
u = mean velocity 
um = bulk mean velocity 
x = axial variable 
y = transverse coordinate 
a = thermal diffusivity 
T(P) = Gamma function of argument P 
S(x) = the half width of flow channel 
A(x) = &/h, the dimensionless half width of 

flow channel 
,e(ij) = dimensionless total diffusivity defined 

by equation (7a) 
tH = eddy diffusivity of heat 
tm = eddy diffusivity of momentum 

•q = dimensionless transverse coordinate 
8 = dimensionless temperature profile 
0 = (kJke)lT, - Ti)/T0 - T/)], dimension

less freezing parameter defined by equa
tion (156) 

A„ = the nth eigenvalue 
v = constant defined by equation (18a) 
v' = kinematic viscosity 

i 
iex 

dimensionless axial 
cD e PrRe 

variable 
<P\ = constant defined by equation (18a) 

Subscripts 

/ = freezing conditions 
t = liquid phase 
s = solid phase 
0 = channel center or inlet 
1 = channel wall 
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Then the temperature distribution in the liquid phase is now taken 
in the form 

n=0 I JO A(£')J 
(9) 

and the Fn are evaluated by utilizing the boundary condition at J = 
0, which results in the relation, 

£ FnHn = 1; 
ra = 0 

the orthogonality property of the eigenfunctions leads to the deter
mination of Fn as 

2 
Fn = --

3H(1) 
1 a\n 

(10) 

The temperature gradient at the liquid-solid interface is obtained 
from equations (9) and (11) as 

dBe(l, 0 

dr) 

PnHn'(l) 

= 2 £ A n .expF-\ n
2 f £ - ^ - l (11) 

n=o L Jo A(£')J 

A„ = - ; (12) 

and the heat transfer rate from the liquid at the liquid-solid interface 
is determined from the relation 

dTtiS.x'V 
•• 2k, 

Jo L dy A 
(13a) 

which is written in the dimensionless form as 

q 2 rt - 2 ^]*-chu0tmPc'(T0 - Tf) A(0 Jo L dr, 

Here, «o,m is the bulk mean velocity at £ = 0, and p and c' are the 
density and the specific heat of liquid, respectively. By use of the 
relation (11), equation (136) becomes 

Q = 7 7 ^ £ An i exp - A n
2 J — 5 — d r (13c) 

A(£)„=0 J o H L J o A(£")J 

The temperature distribution in the solid phase is obtained from 
equations (5) as 

-SAn-D (14a) 
' (1 - A(f)) 

and the temperature gradient at the liquid-solid interface becomes 

d6s(l,!;) __ A(Oet 
(146) 

(1 - A(fl) 

Finally, the expression for the location of the liquid-solid interface, 
A, is obtained by substituting the values of the derivatives dBe/dr, and 
dBs/dr, from equations (11) and (146), respectively, in the interface 
relation (6) 

HO = • i +v[2! / -^rs] 
(15a) 

k, \1 
(156) 

where the freezing parameter 0 is defined as 

fTrzIi) 
k, VTo-V 

The relations (13c) for the heat flux, Q, and (15a) for the radius of 
the liquid-solid interface, A(£), involve the eigenvalues Xn

2 and the 
constants An. These quantities are determined from the solution of 
the eigenvalue problem given by equations (8). Although the first few 
eigenvalues and eigenfunctions can be obtained by purely numerical 
means, the numerical solutions become less accurate as the value of 
n increases. Unfortunately, for the case of low Prandtl number, a large 
number of eigenvalues and eigenfunctions are needed for the con
vergence of series forming the solution. Therefore, a combination of 
a numerical and a matched asymptotic expansion technique is used 
to determine the eigenvalues X„ 2 and the constants An over a large 
spectrum of n as now described. 

The Computer Calculations of \ n
 2 and A„. The first four of 

these eigenvalues and the constants are determined by solving the 
foregoing eigenvalue problem numerically with a digital computer 
in double precision arithmetic and the resulting values of Xn

 2 and An 

are presented in Table 1. 
The Analytic Solution of X„ 2 and An. The eigenvalues A„2 and 

the constants An are determined analytically by solving the eigenvalue 
problem given by equations (8) by a matched asymptotic expansion 
technique as described in reference [7]. The resulting values of the 
eigenvalues \„ and the constants An which can be used for n > 3 are 
given as 

A„ = 
rnr + <pi 

G 

and 

where 

and 

sin (Wp) • 0AJ 2 'T (1 - v) 

G\nY(l + v) 

-;(H- l + 2ro 

Jo 

(16) 

(17) 

(18a) 

(186) 

Here F(p) is the Gamma function of argument p. The parameter G 
in equations (16) and (17) is constant for a given Reynolds and Prandtl 
number. This constant is determined by numerical integration and 
the resulting values for Re = 104 are given in Table 2 for different 
values of Prandtl number. 

Results 
The values of A„2 and An given in Table 1 combined with those 

from the asymptotic formulas given by equations (16) and (17) are 
substituted into equations (15a) and (13c) to determine the location 
of the liquid-solid interface, A(£), and the heat transfer rate, Q, re
spectively. An iterative procedure is applied to compute A(£) from 
equation (15a) since the quantity A(£) appears in both sides of that 
equation. These quantities are a function of the dimensionless axial 

Table 1 Eigenvalues X„2 and constants A„ for Re = 104 

Prandtl 
Number 

0 . 0 

.002 

.004 

. 0 1 

. 0 2 

. 0 4 

*? 
2.6383 

2.6410 

2.6486 

2.718 

2.9786 

3.737 

A 
25.421 

25.440 

25.520 

26.26 

29.041 

37.41 

i 
71.500 

71.550 

71.789 

74.00 

82.241 

107.46 

A 
140.95 

141.06 

141.54 

145.98 

162.68 

214.10 

*0 

.95037 

.95106 

.95408 

.9820 

1.08542 

1.3912 

*1 

.86528 

.86569 

.86754 

.8845 

.94565 

1.1075 

A 2 

.83120 

.83146 

.83264 

.8434 

.88087 

.9706 

A 3 

.81033 

.81082 

.81134 

.8187 

.84423 

.9044 
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Table 2 The constant G tor Re = 104 

prandtl 
Number 

G 

0 

.91907 

.002 

.91871 

.004 

.91711 

.01 

.90268 

.02 

.85412 

.04 

.74282 

position £, the freezing parameter 0, Prandtl number, and Reynolds 
number. Our calculations in the range 104 < Re < 106 have shown that 
the Reynolds number has only negligible effect on both the location 
of the dimensionless liquid-solid interface and the heat transfer rate. 
Therefore, the following results presented for the case of Re = 104 only 
are also applicable up to Re = 106. Table 2 lists the values of the 
constants G appearing in equations (16) and (17) for the determina
tion of eigenvalues X„ and the constants An. The results in Tables 1 
and 2 are limited to low Prandtl numbers, which are applicable to 
liquid metals. Actually for the case of high Prandtl number one need 
not go through the process of asymptotic expansion technique. Re
cently Hwang and Sheu [9] studied liquid solidification both ana
lytically and experimentally for laminar flow inside a circular tube. 
One of the assumptions made in their analysis, as in the present one, 
included the slow variation of 5(x) along the channel. Based on the 
agreement between their analytical and experimental results, it ap
pears that this assumption is a reasonable one. Although the effects 
of free convection may be important for freezing in laminar flow as 
pointed out by Zerkle and Sunderland [1], in the experimental in
vestigation of reference [9] this effect was suppressed by using a tube 
of small diameter. In the case of freezing in turbulent flow considered 
in the present work, the free convection effects are negligible. 

In Fig. 2, the dimensionless position of the liquid-solid interface 
A({) is plotted versus the dimensionless axial position £ for Prandtl 
numbers of 0 and 0.04 and for the values of the freezing parameter 8 
equal to 0.5,1,1.5, and 2.5. It is apparent that for a given 0 the varia
tion of Prandtl number from 0 to 0.04 has little effect on the position 
of the liquid-solid interface. It is also apparent that the thickness of 
the liquid-solid interface increases with increasing value of the 
freezing parameter 8. That is, a larger value of 8 implies a larger cooling 
rate, for example, as affected by a lower wall temperature; and the 
result is a thicker freeze layer. The curves are terminated before the 
closure of the flow passage, because the present analysis is not ap
plicable when the closure takes place. 

Pig. 3 shows a plot of the dimensionless total heat transfer rate Q 
per unit width of the plates as a function of the dimensionless axial 
position £ for Prandtl number of 0.01 and I equal to 0.5,1,1.5,2, and 
2.5. The effect of 8 on Q is similar to that on A; that is increased value 

Fig. 2 Effects of Prandtl number and the parameter 8 on the location of liq
uid-solid interface. 

103 10 2 10"' 10° 

Fig. 3 Effects of the parameter 9 on the rate of heat transfer for freezing of 
liquids in turbulent flow between parallel plates. 

of the parameter 6 results in an increase in the total heat transfer rate. 
The results are presented here only for a Prandtl number 0.01, because 
there is little difference in the results in the range of Prandtl numbers 
from zero to about 0.04. 
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APPENDIX 
The total eddy diffusivity of heat e(-q) is defined as 

e(v)= = 1 + P r — = 1 + - (A-l) 
a f v Pr t v 

Assuming the shear stress varies linearly with the distance from the 
wall, we write 
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Table A-1 Values of -^- and m 
Umax 

Reynolds 
Number 

104 

5x104 

105 

5xl05 

106 

u 
m 

u max 

.788 

.821 

.832 

.857 

.865 

tn 

5.890 

7.198 

7.748 

9.310 

9.930 

tm _ dz lz=o 

"' du 

dz 

where the velocity distribution is taken as 

1 
u^ 

0.091 

(A-2) 

tan" 1 (0.091 Y+), 0 < Y+ < 45 (A-3a) 

u+ = 5.1 + 2.5 tn Y+, 45 < Y+ < 

+ Umax 1/ /T—r-r j / \ 
u+ = / v / m / 8 - h(z), 

f^vT^gzl (A-3b) 
L 2 Jz=o.i5 
TRe , I 

Y+>\^VJJ8Z\ (A-3c) 
2 Jz=0.16 

where 

u + = / / V / V 8 , 
Re 

Y+ = — v 7 ^ 7 8 - 0 a n d 

and the values of umaJum are tabulated in Table A-1. The friction 
factor fm and the velocity defect law h(z) are given as 

fm = l/[2 log (Re V 7 J - 0.8]2, h(z) = 5.75 log (1/z) (A-4) 

The turbulent Prandtl number, Pr t l needed in equation (A-1) is 
taken for Pr < 1 as suggested by Notter and Sleicher [8], as 

P r / 

0.025 Pr — + 90 Pr3 '2 

(7) 
1/4 

1 + -
10 

1 + 90 Pr3 /2 3/2 (7) 
1/4 

(A-5) 

35 + -

In the case of the power law velocity profile the values of the ex
ponent m are computed from the relation 

m = 2/ (Vl + 8umaJum ~ 3) (A-6) 
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Non»Fourier Melting of a Semi-
Infinite Solid 
The melting of a semi-infinite solid subjected to a step change in temperature is soloed ac
cording to a non-Fourier heat conduction law postulated by Cattaneo and Vernotte. Un
like the classical Fourier theory which predicts an infinite speed of heat propagation, the 
non-Fourier theory implies that the speed of a thermal disturbance is finite. The effect 
of this finite thermal wave speed on the melting phenomenon is determined. The problem 
is solved by following a similar method as used by Carslaw and Jaeger for the correspond
ing Fourier problem. Non-Fourier results differ from Fourier theory only for small values 
of time. Comparing the temperature profiles and the solid-liquid interface location for 
aluminum, differences between the two theories were significant only for times on the 
order of 10~9~10~n s and in a region within approximately 10~4-10~5 cm from the 
boundary surface. However, these results are based on an approximate value of the ther
mal relaxation time. 

In troduc t ion 

The heat transfer problem that describes the change of state which 
occurs with melting or solidification has numerous practical appli
cations, and has been studied in quite some detail (see the review 
article by Muehlbauer and Sunderland [l]2). The first discussion of 
this heat transfer problem was given by Stefan [2] in 1891, from which 
the title Stefan's Problem originated. These melting and solidification 
problems are rather complicated because of several factors: 

1 the interface between the solid and liquid phases moves with 
an unknown motion as latent heat is absorbed or liberated, 

2 thermal and mechanical properties of the two phases are in 
general not the same, 

3 the matching conditions at the interface cause the problem to 
be nonlinear. 

Carslaw and Jaeger [3] presented an exact solution to the one-
dimensional, semi-infinite melting or freezing problem using existing 
half space solution forms for the temperature profiles in the solid and 
liquid phases. By satisfying the heat balance and temperature con
tinuity across the phase-change interface, they met all the conditions 
on the problem. Additional exact and approximate solutions to 
one- and two-dimensional Stefan-type problems are referenced in [1]. 
More recent work in this area has been in numerical methods for 
multidimensional problems. 

A review of this literature indicates that all previous studies of the 

1 Presently at Sandia Laboratories, Livermore, Calif. 
2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
April 16,1976. 

change-of-state heat transfer problem are based on the Fourier heat 
conduction law 

-kVT (1) 

Equation (1) along with the conservation of energy gives the classical 
parabolic heat equation 

aV2T = -
3T 

at 
(2) 

Many investigators [4, 5] have pointed out that Fourier's model 
possesses several serious shortcomings, the most prominent being the 
implication of an infinite speed of heat propagation. Cattaneo [6, 7] 
and later Vernotte [8, 9] independently postulated a damped wave 
model for heat conduction in solids of the form 

- f e V T - T ^ 2 

dt 
(3) 

The quantity T is called the material thermal relaxation time and 
physically is a result of a finite thermal communication time between 
material points. Equation (3) combined with the conservation of en
ergy for rigid media gives the hyperbolic heat conduction equation 

dT d2T 

aV2T =— + T 
dt dt2 

which can also be written as 

„ „„, IdT d2T 
c2V2T = + 

r dt dt2 

(4) 

(5) 

where c2 = ah represents the speed of propagation of thermal signals 
modeled by equations (3)-(5). Equation (5), sometimes known as the 
telegraph equation, has solutions which take the form of waves 
propagating through the media at constant speed, c, while decaying 
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in amplitude exponentially with time. 
With regard to this theory, the heat flux vector can be expressed 

explicitly by solving equation (3); the result is 

2 = Jo 
(6) 

Other more general non-Fourier conduction laws of the form of 
equation (6), i.e., linear integral relations, have also been proposed 
[5]. 

Many investigators have pointed out that the effect of a finite speed 
of propagation is negligible for most practical heat transfer applica
tions since the thermal diffusivity is usually several orders of mag
nitude less than the square of the wave speed. However, several other 
investigators [10-14] have demonstrated that for many special ap
plications such as situations at cryogenic temperatures, short times, 
or high heat fluxes, finite wave speed theory can become important. 
Furthermore, with the advent of laser penetration and welding, ex
plosive bonding, fast flux nuclear reactors, and electrical discharge 
machining, short time, high heat flux melting situations are becoming 
more prevalent. 

With this in mind, and realizing that no analysis has been done for 
the melting (or freezing) problem using a non-Fourier theory, the 
purpose of the present article is to solve the one-dimensional melting 
problem of a semi-infinite body using the Cattaneo-Vernotte non-
Fourier heat conduction theory. The method of attack will parallel 
the technique used by Carslaw and Jaeger [3] for the Fourier problem, 
and comparisons with the Fourier theory will be made. 

M e l t i n g P r o b l e m 
The problem of the one-dimensional melting of a semi-infinite body 

is solved here according to the Cattaneo-Vernotte non-Fourier theory 
given by equations (3)-(6). The body is assumed to occupy the region 
of space x > 0, and to be initially at a uniform temperature TQ. The 
surface temperature at x = 0 is suddenly brought to Tw at t = 0, and 
is maintained at Tw for t > 0. If Tm is the melting temperature of the 
medium, then the inequalities, T0<Tm < Tw will hold. At any time 
t > 0, the body will be composed of two portions, one solid and one 
liquid, separated by a moving interface. The location of this phase-
change interface will be denoted by x = s(t), and is an unknown in the 
problem; see the schematic in Fig. 1. 

In the liquid portion of the body, 0 < x < s(t), the problem is for
mulated by 

d2Te 

' dx2 at + re 

d2Te 

at2 

with 

Te(0, t) = TwH(t) 

(7) 

(8) 

where H(t) is the unit Heaviside step function. Likewise, in the solid 
portion of the body, s{t) < x < <», the formulation is 

d2Ta dTs 

dx2 dt 

d2Ts 

dt2 (9) 

Phase Change 
Interface 

Fig. 1. Schematic of the one-dimensional melting geometry 

with 

T.KO-To (10) 

At the interface between the solid and liquid phases, the continuity 
of temperature and energy balance requires that 

Ts(s(t),t) = Ts(s(t),t) = Tm 

qe(s(.t),t)-qs(s(t),t)=Lp 
ds 

dt 

(11) 

(12) 

where the density is taken to be constant. Using equation (6) in 
equation (12) and assuming that the relaxation times in the solid and 
liquid phases are the same3 gives 

, dTMt),t) u BTe(s(t),t) 

dx dx 

I d2s ds 
= LP ( T — - + — 

\ dt2 dt. 

d2s . ds\ 
(13) 

where 

Following the solution method of Carslaw and Jaeger [3], specific 
half-space solution forms for single phase problems will be used in 
the solid and liquid regions with conditions (11) and (13) to be satis
fied. Baumeister and HamilPs [11, 12] work provides these needed 
solution forms (also see [15] for more details). First introduce the 

3 This assumption is made for convenience in simplifying equation (12). In 
general one would expect the relaxation times to be different. However, at 
present, only estimated values of T exist. 

- N o m e n c l a t u r e -

c = V a / r = thermal wave speed 
cp = specific heat at constant pressure 
H(-) = unit Heaviside step function 
h, h, h = modified Bessel functions of order 

0 ,1 , 2 
k = thermal conductivity 
ks, k[ = thermal conductivities in the solid 

and liquid regions 
L = latent heat of fusion 
m = Fourier constant related to interface 

location 
q = heat flux vector 
qs, qe = heat flux in the solid and liquid re

gions 

s{t) = phase-change interface location 
s(t) = dimensionless phase-change interface 

location 
t = time 
T = temperature distribution 
Ts, Tg = temperature distribution in the solid 

and liquid regions 
Tm = melting temperature 
T 0 = initial temperature 
Tw = free surface or wall temperature 
x = spatial variable 
erfc(-) = complimentary error function 

a = k/pcp = thermal diffusivity 
as, at = thermal diffusivity in the solid and 

liquid regions 
/} = t/2r = dimensionless time 
/3* = dimensionless time when Twave front

 = 

Tm 

5S, S( = x/2VasjT = dimensionless distance 
in the solid and liquid regions 

V = vector differential operator 
p = mass density 
T = material thermal relaxation time 
TS, T£ = material thermal relaxation time in 

the solid and liquid regions 
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dimensionless variables 

t 

2 T 
(14) 

The solution for the temperature distribution within the liquid region, 
which satisfies equations (7) and (8), may be written as 

Tt{be, fi) = Tw + A{1 - Fe(be, B)\ (15) 

while the solution in the solid region satisfying equations (9) and (10) 

is 

Ts(bs,fi) = T0 + BFs(&s,fi) (16) 

where A and B are constants to be determined, and 

Fe.s(bt.s,fi)=H(fi-be.s)\e St.. 

+ 8 
J hi. 

e * , -an in)4 

with 11 being the first-order modified Bessel function. Note that on 
the wave front x = ct, and hence bf.„ = fi and F(.s = e~$. 

The location of the phase interface can be redefined in the di
mensionless variables bg or 5S by 

b,= ^ • bs =s(fi) 

Therefore, condition (11) at the interface becomes 

Tm + A[l-Ft(s(fi),fi)] = Tm 

To + BFAV^fasm),0) 

(18) 

(19) 

Similarly condition (13) reads 

dFs ksV^7hTs{.Tm - To) -r (VZJ^stf), fi) 
ob. 

+ -

Fs(V^Mss(B), fi) 

dF, 
ke{Tm-Tw)-^(S(fi),fi) 

dbe 
Lpa, 

fd2s 

\d~fi* ( r — 
ds\ 

dp) 
(20) 

l-Fe(Hfi),fi) 

where the constants A and B have been eliminated by using equations 
(19). 

The three conditions (19) and (20) which are to be used to deter
mine the quantities A, B, and s(fi) are nonlinear in s(fi). Consequently 
to proceed with the solution, some approximations will be made and 
numerical techniques used. Two basic ideas are to be employed: 

1 As indicated in past research, non-Fourier results should ap
proach the corresponding Fourier results as t —• °°. 

2 Referring to Fig. 2, which illustrates a typical non-Fourier 
temperature distribution for increasing values of time, it is evident 
that there exists a value of time, say fi*, where the temperature at the 
wave front has decreased from Tw and become equal to Tm. For times 
0 < (3 < /3*, the non-Fourier thermal wave is assumed to carry the 
solid-liquid interface along with it.5 After the time fi*, the wave dis
continuity is less than Tm, and therefore travels in the solid ahead of 
the phase-change interface; see Fig. 2. 

From assumption 2 in the foregoing, the motion of the phase in
terface for 0 < fi < fi* is 

s(fi) = fi; 0<8<fi* (21) 

4 The corresponding Fourier problem is formulated in exactly the same way 
with Fi.a(de.s, 0) = erfc(6,,s/\/20), see Carslaw and Jaeger [3,15]. 

5 This assumption, based on physical grounds, makes the problem solution 
approximate because the energy balance and temperature continuity across 
the interface cannot be satisfied. 

— - SOLID-LIQUID INTERFACE 

J8 = j 8 * -—- __£>£* 

Dimensionless Distance, 8|_ 

Fig. 2. Typical non-Fourier temperature profile for various values of time 

For B> fi*, the interface motion was determined numerically using 
an empirical equation. The form of this empirical relation was moti
vated by statement 1, in that s(/3) -* m V/3 (which is the Fourier result, 
withm a constant) as/3-» <». The form of the quantity Ft.s(be.s, fi) in 
equation (17), and the asymptotic behavior of the modified Bessel 
functions, lead to an empirical form 

s(fi) = ef>[DIo(0) + Ehifi) + Fh<M~\ 0 > , (22) 

with D, E, and F being constants. 
The constant F can be determined by the long time asymptotic limit 

giving 

F = ^ - D - E 
m 

(23) 

Likewise the constant E is found from the initial condition that 
s(fi*) = fi*, yielding the result 

E--

~ - D[I0(fi*) -12(8*)] — I2(fi*) 
fi* m 

h(fi*)-h(fi*) 

with fi* determined from the corresponding Fourier case to be 

fi* = - In [erfc(m/V2)] (24) 

Finally the constant D was determined by a least-squares fit of the 
curve s(/3) which keeps the quantity F((s(fi), fi) a constant (note 
equation (19)); the result produces 

D 
1.25315 

m - 0.00309766m2 - 0.101483m3 - 0.0142969m4 (25) 

The solution to the problem is completed by determining the value 
of the constant m. The relation for s{fi), equation (22), is substituted 
into the energy balance (20), and a numerical direct search routine 
is performed on the resulting expression to give m. This completely 
determines s(fi), and equations (19) can then be used to find the 
constants A and B. It should be pointed out that since the form for 
s(fi) is approximate, equation (20) cannot be exactly satisfied for all 
values of time fi.6 In other words the quantity m determined from (20) 
will vary slightly for different values of fi; however, the variation was 
small and was not considered to be a significant error. 

C o m p a r i s o n and D i s c u s s i o n 
To compare this non-Fourier solution with the corresponding 

Fourier problem, consider the case of aluminum media with the fol
lowing properties: p = 2.38 g/cm3 (149 lb/ft3), L = 400 J/gm (172 

6 This fact is in contrast to the Fourier theory where the energy balance 
equation and temperature continuity relation can be exactly satisfied by s(p) 
= m VjH, see [3,15]. 
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Fig. 3. Temperature profile comparison for aluminum with T» = 1366 K 
(2000°F), T„ = 310 K (100°F), and ff = 0.5 

Dimensionless Distance, 8, 

Fig. 4. Temperature profile comparison for aluminum with T„ = 1366 K 
(2000°F), T0 = 310 K (100°F), and /} = 1.0 

Btu/lb), ae = 0.387 cm2/s (1.5 ft2/hr), as = 0.947 cm7s (3.67 ft2/hr), 
ke = 0.968 W/cm-K (56 Btu/hr-ft-°F), K = 2.28 W/cm-K (132 Btu/ 
hr-ft-°F), and Tm = 933 K (1220°F). Figs. 3-5 illustrate the com
parisons of the temperature profiles predicted by both theories for 
various times 0 = 0.5,1.0, 3.0 with Tm = 1366 K (2000°F) and T„ = 
310K(100°F). 

The figures show the non-Fourier wave front in contrast to the 
continuous Fourier temperature profile. The predicted location of 
the solid-liquid interface is also different from each theory. In all cases 
considered, for small times the non-Fourier temperatures will be 
higher than the corresponding Fourier values. This fact agrees with 
previous research in nonmelting situations [14]. Furthermore the 
non-Fourier interface location will be farther into the media than the 
Fourier prediction, with the maximum difference occurring at /? = /?*. 
With /? > 10 both theories predict essentially identical behavior. 

In order to relate the previous results to actual dimensional quan
tities, the value of the thermal relaxation time r must be known. 
Brazel and Nolan [16] give only estimates of this parameter in the 
range 10~1 0-10'1 2 s. With this estimate of T, the non-Fourier effects 
in the melting problem exist for only about 10 _ 9 -10 - 1 1 s and are 
confined to about 10_4-10~6 cm from the half-space surface. It should 
be pointed out that if T and/or Tw increases, the non-Fourier effects 
become more prominent. It is felt that these effects begin to border 
on some special heat transfer situations such as those mentioned in 
the Introduction. 
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Continuous Casting of Cylindrical 
Ingots 
The Heat Balance Integral Method is applied to solve for the continuous casting of cylin
drical ingots. Unlike previously developed integral solutions the present analysis includes 
the effect of axial conduction. Comparison with the solution derived by Veynick (which 
neglects axial conduction) shows that, for small Peclet numbers, the discrepancy between 
the results can be quite appreciable. In particular the pool depth prediction by the 
present analysis can be as much as 40 percent shorter. In its present form the method as
sumes constant temperature in the liquid metal and constant properties in the solidified 
crust. It is applicable to a variety of surface cooling rates including constant film coeffi
cient, constant heat flux and other more general conditions. It can also take into account 
superheat of the molten metal. 

1 Introduction 

The problem of predicting the solidification front and the tem
perature field for the case of continuous casting process of a cylindrical 
ingot is of great practical importance. Due to the release of latent heat 
during the change of phase such a problem is nonlinear and consid
erably more difficult to solve than the corresponding single phase 
problem. 

Analytical closed form solutions of conduction problems with phase 
change may be obtained only for a limited number of problems with 
idealized boundary conditions. For the problem at hand no analytical 
solutions can be found and most of the attempts at solving it use finite 
difference or finite element numerical schemes. A large number of 
these numerical solutions have appeared in the general literature, the 
most recent of which by Kroeger and Ostrach [l]2 includes the effects 
of natural convection in the liquid metal. Such numerical methods 
can be made quite general and include effects of superheat, axial 
conduction and the like but this is usually accompanied with added 
complexity. 

Other solutions using a heat balance integral method (HBIM) have 
been developed by Veynik [2], Goodman [3], and Hills [4]. This ap
proach is much simpler to use and is a valuable tool for the analysis 
of some continuous casting processes. However, the simplifying as
sumptions used in these solutions introduce inaccuracies for low 

1 Present address: Cabot Corp., Billerica, Mass. 
2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
September 5,1975. 

casting speeds, particularly in the bottom region of deep pools as has 
been noted by Kroeger [5]. Some of the previously used simplifying 
assumptions are inherent in the method used; but other assumptions, 
which we think are more important, are not necessary for the for
mulation of the problem in terms of the HBIM. This paper develops 
an HBIM approach which includes conduction in the direction of 
casting as well as the effect of superheat in the feed metal. The anal
ysis is somewhat more complex than in the previous HBIM solutions 
but is still far simpler than in any finite difference or finite element 
formulation. 

The HBIM seems to have been developed independantly at about 
the same time by Goodman [6] and Veynick [2]. Goodman's formu
lation seems to be more general and is similar to the momentum in
tegral method used in conjunctions with viscous boundary layers. 
Venick's formulation, on the other hand, seems to have been based 
on some empirical results which suggest a linear temperature distri
bution in the solidified crust. The two methods can, in fact, be shown 
to be identical when the same set of assumptions are applied on both 
of them. The HBIM consists essentially in defining a region of 
thickness d inside which the temperature distribution is represented 
by some polynomial approximation. The thickness <5 is such that the 
boundary conditions affect the temperature distribution only within 
that thickness. Beyond this thermal boundary layer, the temperature 
is usually assumed to be constant. The constants involved in the 
polynomial approximation for T are found by writing the boundary 
conditions on one side of the thermal layer and some smoothing 
conditions on the other side. The problem is then solved by integrating 
the partial differential equation in one direction thus giving an ordi
nary differential equation in 5. 

The analysis developed in thjs paper essentially follows the steps 
outlined previously but differs substantially from the work of Veynick 
and Goodman in that it includes conduction in both directions radial 
and axial. The solution will be developed for cylindrical ingots but 
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Fig. 1 Schematic diagram of solidification of a continuous casting 

may very easily be extended to solve for flat two-dimensional ingots. 
In developing the method we will show how Veynick's solution can 
in fact be obtained as a limiting asymptotic form of our analysis for 
large Peclet numbers. 

2 T h e H e a t B a l a n c e I n t e g r a l E q u a t i o n 
A typical continuous casting process is shown in Fig. 1. Liquid metal 

is supplied continuously at the top of a bottomless mold. The molten 
metal is then cooled which results in forming a solid metal skin, the 
strength of this solidified skin must be sufficient to contain the re
maining liquid and permit continuous withdrawal of the casting at 
a constant speed U. 

The partial differential equation describing this problem assuming 
constant material properties is: 

k 11 d 

pCp [r dr 

with convective cooling on the surface: 

dt\ d2t] dt 
— 1 +—T = U — 

dx2) dx 
;he sur 

* -

(i) 

(2) 

where tR is the surface temperature. 
Calling the thickness of the solidified crust t, we can write the equa
tion of conservation of energy at the solid liquid interface: 

• de , rati , rati de 
pU\ — =-k\ — \ -k — — 

dx Ldrse Ldxiedx 
(3) 

Assuming the temperature field to be constant in the liquid region, 
equation (1) may be integrated with respect to r from 0 to R. This 
integration which is presented in detail in Appendix 1 gives: 

d26 , d2b /dS\2 d6 
- ( 1 - 5 ) — + I ) -P 

dX2 

+ P(1 

dX2 \dXl 

db 
• S)(l + A) 

dX 
•BTR 

dX 

= 0 (4) 

This equation is dimensionless, all distances having been divided 
by R and all temperatures divided by the solidification temperature 
to- B and P are, respectively, the Biot number and the Peclet number 
and 5 = t/R, 

1 pR 

toR2 JR-I 
trdr (5) 

is the nondimensional temperature integral in the solidified crust. 
Equation (4) contains three unknowns TR, 5, and 6. Two of these 

unknowns namely TR and 0 may be eliminated if one can find a 
polynomial approximation for t(r) in the solidified crust. When this 
is done, equation (4) will reduce to an ordinary differential equation 
in 8. The accuracy of our results will, of course, depend only on the 
accuracy of the approximating polynomial as equation (4) is an exact 
equation not involving any approximation. 

In Veynick's analysis the conduction term in the X-direction was 
neglected, using this simplifying assumption equation (4) reduces 
to 

db d6 
P ( l - « ) ( 1 + A) — - P — ~BTR 

dX dX 
•0 (6) 

This is in fact an asymptotic form of equation (4) for large Peclet 
numbers. This explains the lack of accuracy of Veynick's solution for 
shallow pools and in the bottom regions of deep pools. 

3 So lu t ion for Constant B 
3.1 The Approximating Polynomial. The temperature dis

tribution inside the solidified crust is assumed to have the form 

T = a + bY + cYn (7) 

where Y — 1 — r/R is the nondimensional distance measured from the 
lateral surface of the ingot. The parameters a, b, and c are only 
function of X and will be determined from the boundary conditions 
on both sides of the solidified region. The exponent n is constant, it 
will be determined in terms of B, P, and A by writing a boundary 
condition expressing the heat flow into the section of the ingot at end 
of solidification. 

Writing the boundary conditions for 

Y = 0, [T]Y=0 = TR 

and 

• N o m e n c l a t u r e . 

a,b,c = constants appearing in the polyno
mial approximation for T 

oi, «2 = constants appearing in the solution 
for the surface temperature 

h = film coefficient for the cooling at the 
surface of the ingot 

k = thermal conductivity 
( = solidified crust thickness 
n = exponent appearing in the polynomial 

approximation for T 
r = radial coordinate 

t = temperature 
to = temperature of solidification 
tR = surface temperature 
x = axial coordinate 
B = Biot number 
Ci, C2 = constants appearing in the solution 

for the surface temperature, equation 
(11) 

Cp = specific heat 
F1, Fi - functions defined in equation (18) 
Ki, Ki = constants appearing in equation 

(19) 
P = Peclet number 

R — radius of the ingot 
T = dimensionless temperature 
U = casting speed 
X = dimensionless axial coordinate 
Xo = pool depth 
Y = dimensionless radial coordinate mea

sured from the surface inward 
5 = dimensionless solidified crust thickness 
X = latent heat 
p = density 
6 = parameter defined by equation (5) 
A = dimensionless latent heat 

30 / FEBRUARY 1977 Transactions of the ASME 

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



and for 

:find 

and 

r q =BTR 
LayJy=o 

y = « , [T]y=S = l 

a = TR 

b = BTR 

1 - (1 + BS)TR 

c = 
S" 

(8) 

(9) 

One more boundary condition is necessary in order to determine TR, 
this may be provided either by using equation (3) which expresses 
energy conservation on the solidification front or writing equation 
(1) at r = R. The second alternative is found to be more suitable as 
will be shown in Appendix 2. The use of equation (1) on the surface 
yields an ordinary differential equation in TR: 

d2TR „ dTR 

dX2 dX 
BTf l = 0 (10) 

And, as this equation does not involve 6, it can readily be solved and 
we get for the case when B is assumed constant: 

TR = Ci exp (aiX) + C2 exp (a2X) (ID 

where 

P . / P 2 

a u = - ± V 7 + B 

and Ci and C2 are constants of integration. 
3.2 Solution in the Fully Solidified Ingot. As the longitudinal 

conduction terms has not been neglected the solution of the problem 
requires that we know the amount of heat flux crossing the sections 
x = 0, where as shown in Pig. 1 the origin of the x axis is taken at the 
section of the ingot where the solidification is fully completed. This 
requires solving for the temperature field throughout the solidified 
ingot from x = 0 to infinity. The temperature distribution in a moving 
cylinder subject to a convective cooling on its surface can be derived 
analytically as in [7] but for simplicity we will use an approximate heat 
balance integral solution. In the region x > 0 equation (4) takes the 
form 

d20 d0 
r - P BT f l = 0 

dX2 dX 
(12) 

Taking a temperature profile as in (7), we find after substituting for 
the boundary conditions: 

T=TR ( l + B Y - - Y » ) (13) 

Evaluating 0 equation (12) becomes an ordinary differential equation 
in TR which yields: 

TR = 
n+ (n- 1)B exp [£_V^ + - ^ - L (14) 

1.2 v 4 2/fB + l J 
where 

K •• 

6 n(n + l)(n + 2) 

The constants of integration having been adjusted so as to have 
T(X, Y) — 0 as X — oc, and 7/(0,1) = 1 when X = 0. 

We now require that the sum of heat flux by conduction and sen
sible heat flow on both sides of the section X = 0 be the same. At 

X = 0; TR-
n+(n- 1)B 

comparing equations (7) and (13) we see that the temperature profiles 
on both sides of X = 0 are identical. This proves the continuity of the 

sensible heat flow across the section X = 0. The continuity of the 
conduction flux requires that: 

( - ) = ( - ) 
\dX/x=o- \dX/x=o+ 

but, as we are solving for the temperature distribution on an integral 
basis we require instead that 

Jo dX{ 

be continuous on both sides of the section X = 0. This condition will 
yield: 

r : (1 - Y)dY 

/dT f lx 

and 

ai — 02 I \dX Ix=o+ 

C2 = TR(Q)-C1 

a2TR(0) 

(15) 

Furthermore we also require that the total heat flux that is supplied 
with the liquid metal be equal to the heat removed along the surface 
of the ingot. Calling — Xo the distance between the section at which 
liquid metal is supplied and X = 0, this condition reduces to: 

C°BTRdX + C™BTRdX = -(l + A) 
Jxo Jo 2 

(16) 

And writing that TR (—Xo) = 1 in equation (11), we get two equations 
for the unknowns n and Xo- These nonlinear algebraic equations are 
solved using a standard Newton-Raphson iteration method. 

It must be noted that equation (10) is valid only if n > 2, otherwise 
5 will appear in this equation. The above analysis will therefore fail 
whenever we find a root n < 2. In fact, even if this limitation did not 
exist, it would still be highly undesirable to use temperature profiles 
with n < 2. This is due to the fact that experimental profiles have very 
low second derivatives near the surface. 

In any case, this analysis is found to give n > 2 for all useful values 
of B, P, and A. But, in practice, B varies along the ingot length, and 
it may happen that for a given distribution of surface cooling B(X), 
equations (11) and (16) may give n ^ 2. This would simply indicate 
that the integral solution in the fully solidified region yields a tem
perature profile which is a poor representation of the true distribution. 
Whenever such a thing occurs, a more suitable value of the exponent 
n could be found by using the exact solution in the fully solidified 
ingot (reference [7]) instead of the approximate forms given in 
equations (13) and (14). 

3.3 The Solution for S(X). All the parameters appearing in the 
expression for T having been determined the heat balance integral 
equation (4) reduces to an ordinary differential equation in d(X). In 
fact for the case at hand equation (4) can be integrated once with re
spect to X from 0 to any section —X, this will give: 

d8 , 
+ 0 5 - 1 ) 

dX dX 

dd , / &\ 
- P 0 + PU + A) (S-—J 

"I XBTRdX-^-(l + A) = Q (17) 
o 2 

where Q is the total heat flux crossing the section X = 0. Evaluating 
8 using the polynomial (7) and the definition of 0 (5), we get after 
substituting in (17) and arranging terms the following differential 
equation: 

r-X 
BTRdX = 0 (18) 

Jo 

dS 
Fi — + F2 + Q + 

where 

1 dX J I 2 * 3 \n + 1 

re + 2/J I \ra + 1 / 2 \ r a + 2 / 

1 + Al 
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and where TR, Jo 'BTfldX and (ITR/CLX are determined from equa
tions (11) and (14), respectively. 

Equation (18) is a nonlinear first order ordinary differential 
equation in 5, its solution can be found numerically using any of the 
avaiable numerical algorithms. In this study we have solved (18) using 
a standard fourth order Runge-Kutta method of the Gill's type. While 
integrating it was found that the equation has a singularity between 
- X o and X = 0 which necessitated that the solution be carried in two 
branches one starting from X = 0 and going towards X < 0, and one 
starting at X = —Xo and proceeding forward. This process was not 
found to be inconvenient as the pool depth —Xo is actually known. 
Starting the integrations at both locations 0 and —Xo was carried out 
by using an implicit scheme of first order for 5. 

4 So lu t ions for V a r i a b l e B 
The method outlined previously is not limited to the case of con

stant Biot numbers. Much of the method remains unchanged even 
when more general assumptions are made regarding B. The only 
difference will be in the solution of equation (10). For instance, if we 
assume constant heat flux on the surface of the ingot, i.e., letting BTR 
= b, the solution (11) will have the form: 

TR=Kiexp(PX)--X + K2 (19) 

where Ki and K2 may be determined in the same manner as C\ and 
C-2- For a more general variation of B equation (10) will be of the 
form: 

dX 2 dX 
(20) 

and if an analytic solution can be found the remaining part of the 
analysis will proceed as before. If, on the other hand, equation (20) 
does not admit an analytic solution, then a family of numerical solu
tions must be found and one of these solutions must be selected in 
order to match the condition requiring continuity of heat flux across 
the surface X = 0. 

5 A s y m p t o t i c S o l u t i o n for L a r g e P 
For the sake of comparison Veynik's solution is rederived using a 

similar approach to that of the previous section but using the as
ymptotic form (6) of the heat balance integral equation. Assuming 
T varies linearly in the solidified crust and has the values: 

T=TR at Y = 0 

T = 1 at Y = 6 

one gets 

T=TR + 
1-TR 

(21) 

(22) 

writing the convection boundary condition (2) we get: 

TR=TTB~5 
Substituting in equation (6) we get an ordinary differential equation 
in (X) which may be solved analytically to give: 

„ „ , /A 1 1 \ / 1 A 1 \ <52 

P X = ( - + — + ) 5 + (A + ) -
\B 2B 2B 2 / V 2 B 6 B / 2 

-H)!-^( i +^) l n ( i + B 6 ) (23) i 

' 2B2 V" 3By 

This expression is identical to the result given by Veynick except 
for an empirical constant that appears in some of the terms and which 
according to Veynick, accounts for the actual deviation of the tem
perature profile from the linear distribution. Equation (23) is also 
quite similar to the results of Tikhonov and Shvidovski [8] referred 
to by Veynick. 

6 R e s u l t s and D i s c u s s i o n s 
The method outlined in the foregoing section was used to solve for 

Fig. 2 Solidification profile and Isotherms for the case with B = 1, P = 
and A = 0.68; the upper half of the figure shows Veynick's solution 

2.5, 

the continuous casting problem with A = 0.68 and B = 1 and three 
values of the Peclet number P = 2.5, 5, and 10, respectively. The re
sults are shown on Figs. 2-4. For the sake of comparison, the same 
cases are also solved using Veynick's method, the results are shown 
on the same figures. 

Quite a large discrepancy between the two solutions is noted for low 
P as our analysis predicts an appreciably shorter pool depth. This 
large discrepancy, which seems surprising at first look, can be justified 
by the importance of the longitudinal conduction term for low P. In 
fact, if one tests Veynick's analysis for self-consistancy, i.e., if one is 
to check the relative magnitudes of conduction heat transfer versus 
sensible heat flow, we can easily find the ratio to be: 

[«/S\ dXAx=o 

(3 + B)P2 

6B 
(24) 

which shows that for B = 1 and P = 2.5, the conduction heat transfer 
at the section X = 0 is 24 percent of the total flux at that section; this 
ratio drops to 6 percent for P = 5 and to 1.5 percent for P = 10. 

At the largest Peclet number, it is still possible to note a difference 
in the shape of the bottom of the pool, the present analysis always 
yields an infinite slope for S at the center line. On the other hand, the 
general shape of the pool as well as the pool depth Xo become quite 
similar to the results predicted by Veynick. 

Figs. 2-4 also show some isotherms in the solidified crust and after 
completion of the solidification. The shapes of these isotherms are 
similar to what has been reported in numerical and experimental 
investigations. It can be noted that a slight discontinuity in the slopes 
of the isotherms occur at the section X = 0; this is due to the fact we 
only require continuity of the integral of the thermal flux at this 
section. 

Unfortunately, the accuracy of the results cannot be directly 
evaluated as there are no experimental data that we are aware of that 
give information on B and on the conditions at large distances after 
freezing is completed. However, in view of the fact that the method 

Fig. 3 Solidification profile and isotherms for the case with B = 1, P = 5, and 
A = 0.68; the upper half of the figure shows Veynick's solution 
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Fig. 4 Solidification profile and isotherms for the case with B = 1, P = 10, 
and A = 0.68; the upper half of the figure shows Veynick's solution (note that 
the axial scale of the figure is half the radial scale) 

is more general than that of Veynick, in that it includes conduction 
along X, it makes little doubt that the accuracy attained by the 
present method must be substantially better, particularly for small 
Peclet numbers. 

Although the present analysis is not too cumbersome it would still 
be advisable to use the asymptotic form (6) and its solution (23) for 
large Peclet numbers. 

Comparing a large number of solutions it appears that, provided 
one is not too interested in the exact shape of the bottom of the pool, 
equation (23) can be used whenever 

|Pfl/ 1 >30 

i.e., when the conduction term is approximately less than 3 percent 
of the total heat flux crossing the section X = 0. 

7 Conclusions 
The Heat Balance Integral method has been successfully applied 

to solve for the continuous casting problem of a cylindrical ingot in
cluding longitudinal conduction. The analysis is rather simple and 
can yield the solidification front and the temperature field in the so
lidified crust within few minutes on a medium size computer. Al
though the method is appreciably more complicated than the pre
viously developed integral methods, it is far simpler and cheaper to 
implement than the numerical approach and is suitable for use by the 
practicing engineers. 

In its present form the method assumes constant properties in the 
solidified region, it neglects superheat and the motion of molten metal 
in the pool. This last effect does not seem to play an important role 
according to the recent work of Kroeger and Ostrach [1]. The effect 
of superheat can be easily taken care of by including it in A, i.e., by 
adding the superheat to the latent heat. This will not affect our 
analysis as we have not used any boundary condition on the slope of 
T(Y) at the solidification front. The effect of variable properties is 
presently under investigation, there are good reasons to believe that 
the method could be be extended to cover this. It is not certain how
ever if this could be accomplished while keeping the analysis simple 
enough to make it attractive for practical applications. 
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APPENDIX 1 
Derivation of the Integral Equation. In order to derive equation 

(4), we start by multiplying (1) by r and integrating it along the radial 
direction from 0 to R. Assuming the temperature field to be constant 
in the liquid region, this integration will be equivalent to an integra
tion between R — t and R. 

r* ±(r^)dr+ r M^-MI r *rdr (A1). 
JR-I dr \ dr/ jR-e dx2 k JR-e dx 

The first term may be written as: 

rR d / dt\ , RhtR , „ 3t I 
— lr — )dr = --(R-£)—\ 

JR-e dr \ dr/ k dr\R-e 
Applying Leibnitz rule twice, the second term may be written: 

pR d2t d'2 rR , d'2( 
— rdr = — rtdr - (R - ()t0 — 

jR-edx2 dx2- JR-I ax1 

/d(\2 ,„ „sdt /dt\ + to(—I -(R-t)—( — I 
\dx/ dx \dx/R-t 

Applying Leibitz rule to the term on the right-hand side we get: 

k JR-C dx k dx JR-I dx 

Substituting in (Al), grouping terms and using the boundary condi
tions (2) and (3) we get the final form: 

d20 d2& /do\2 d6 
( 1 - 5 ) + ( ) - P 

dX'2 dX2 \dX/ dX 

+ P(1-<S)(1 + A) — - B T f l = 0 
dX 

where: 

x t tR , rR tr , 
X = —, o = -; TR=JL and 8= j ~dr 

R R t0 JR-etoR2 

And B, P, and A are, respectively, the Biot number, Peclet number 
and the dimensionless latent heat given by: 

Rh CpURp A 
B = —, P = - £ -, A = - — 

k k Cpto 

APPENDIX 2 
Choice of Boundary Conditions. A common difficulty with in

tegral methods is to decide a priori which boundary conditions to use 
in order to get the best accuracy. Sometimes by using higher order 
polynomials and using more boundary conditions, the solution be
comes even less accurate [6]. 

In our case we choose to write equation (1) on the surface instead 
of using (3). Besides being more convenient, we feel that this choice 
is more suitable because 0 is mostly sensitive to errors in t(r) for large 
r. In other words it is preferable to improve our approximating 
polynomial for t near the surface rather than near the solid-liquid 
interface. Furthermore, although (3) is not satisfied on a point-by-
point basis, it is still satisfied on an integral basis through (16) where 
we equate the total energy supply to the total energy released on the 
surface. 

Nevertheless, once the solution S(X) is found, it becomes possible 
to find out to what extent equation (3) is not satisfied. To do this we 
write (3) in the following dimensionless form: 

\dY/s dXl \dX/ J 
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1.00 

Fig. 5 Comparison between the surface temperatures TR obtained from 
equations (10) and (A2) for the case with B = 1, P = 2.5, and A = 0.68 

from the approximating polynomial for T we get: 

/ — ) = B T « + ^ [ l - ( l + B5)Tfl] 
\dY/s 5 

equating these two expressions we get: 

dS f / d a \ 2 " | - i 
n - PA&-

TR-
dX [-(s)T 

B5(n - 1) + n 
(A2) 

If equation (3) was satisfied exactly, then the value of TR obtained 
from (A2) should be exactly equal to the value obtained from (10). Fig. 
5 shows a comparison of these two values for a typical case. The dif
ference is seen to be quite small and it decreases with increasing 5. This 
is due to the fact that 0 becomes less and less sensitive to the value of 
£('') for small r. 
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Analysis of Early-Time Transient 
Heat Conduction by Method of 
Characteristics 
The proposed equations describing early-time one-dimensional heat transfer are hyper
bolic with temperature and flux being, the dependent variables. The method of character
istics is applied resulting in a solution for the variables as functions of distance and time. 
A dimensionless parameter 5 is introduced which is defined either as the inverse thermal 
propagation speed or relaxation time. The numerical solution yields explicitness, stabili
ty, and accuracy combined with ease of handling time-variable boundary conditions. Ex
amples include predicted response to step inputs of flux or temperature at a surface or 
interface of materials and illustrate the transition from non-Fourier to Fourier-like diffu
sion. 

Introduction 

Recently, investigators have analytically explored the phenomenon 
of non-Fourier effects occurring at very early times in highly transient 
heat transfer processes. Examples are high-intensity electromagnetic 
radiation [3],1 the sudden contacting of two liquids such as uranium 
dioxide and sodium [9], and high-rate transfer in rarified media [11]. 
Traditional heat conduction analysis is based on two basic relations, 
namely, the first law of thermodynamics and the Fourier law; com
bined they form a parabolic equation which, depending upon the 
complexity of the boundary conditions, can be solved either analyti
cally or numerically. Implicit in the Fourier law is the assumption that 
the thermal propagation speed is infinite, and for most processes this 
is appropriate. However, for the early-time situations it has been 
hypothesized that a finite propagation speed must be accounted for, 
with the result that an additional term containing the time derivative 
of flux appears in the Fourier equation. One of the first investigators 
to propose the modification was Vernotte [18], who also pointed out 
the hyperbolic nature of the modified equations. Subsequently, a 
number of studies [4, 6, 12, 13, 15, 19] have been directed toward 
physical and mathematical interpretation of the hypothesis, leading 
to the presently accepted relaxation model for heat conduction in 
solids and liquids. 

For one-dimensional flow of heat the first law of thermodynamics 
is given by 

qx + pcTt = 0 (1) 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
March 24,1976.. 

wherein the subscripts x and t denote partial derivatives with respect 
to distance and time, respectively. The modified Fourier equation was 
presented by Vernotte [18] as 

rqt + q + kTx = 0 (2) 

in which T is defined as a relaxation time, of the order of 10~12 to 10 - 1 4 

s [3,13]. Equations (1) and (2) can be combined to form a dissipative 
wave equation 

Ttt + — Tt-a*Txx = 0. (3) 

in which a = Va/r is the thermal propagation speed. Equation (3) 
is a hyperbolic relation and closed form solutions have been found for 
several initial-value problems [2, 9, 14,15, 19]; however, if one were 
to introduce factors such as material property nonlinearity, medium 
nonhomogeneity, or finite boundaries, analytical formulations would 
become more complex. 

Equations (1) and (2) are analogous to the momentum and conti
nuity relations, respectively, for transient one-dimensional flow in 
a fluid line with distributed lateral flow [20]; for a system of this kind, 
a generalized numerical analysis can be formulated by using the 
method of characteristics technique. The solution of hyperbolic 
equations by this method has become a widely accepted and versatile 
procedure for analyzing unsteady flow in hydraulic pipe networks [17] 
and flood waves in rivers [16], for its application to gas dynamics [7], 
and for problems dealing with solid mechanics and long-wave in
compressible flow [1]. Stability and convergence criteria are satisfied 
[8], combined with ease of programming and incorporation of time-
variable boundary conditions. 
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(h + pcT, = () (I) 

wherein the subscripts x and t denote partial derivatives witb respect 
to distance and time, respectively. The modified Fourier equation was 
prcsented hy Vernotte [181 as 

T!J, + !J + hI', = 0 (2) 

in which T is defined as a relaxation time, of the order of 10- 12 to 10-- 101 

s 1:1, I:\]. gquations (I) and (2) can be comhined to form a dissipative 
wave equation 

a 2 
'['It + - 1', - a2Txx = () (3) 

" 
in wbich a = ",r,;r; is the thermal propagation speed. Equation (:1) 

is a hyperbolic relation and closed form solutions have been found for 
several initial-value prohlems [2,9, 14,15, 191; however, if one were 
to introduce factors such as material property nonlinearity, medium 
nonhomogeneity, or finite hound aries, analytical formulations would 
become more complex. 

Equations (1) and (2) are analogous to tbe momentum and conti
nuity relations, rcspectively, for transient one-dimensional 110w in 
a l1uid line with distrihuted lateral flow 1201; for a system of this kind, 
a generalized numerical analysis can be formulated by using the 
method of characteristics technique. The solution of hyperbolic 
equations hy this method has hecome a widely accepted and versatile 
procedure for analY7.ing unsteady flow in hydraulic pipe networks [171 
and nood waves in rivers r J 61, for its application to gas dynamics [7], 
and for problems dealing with solid mechanics and long-wave in
compressihle flow r J I. Stahility and convergence criteria are satisfied 
IIlL comhined with ease of programming and incorporation of time
varia hie houndary conditions. 
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The intent of this paper is to present a numerical technique for 
analysis of early-time, one-dimensional heat transfer processes based 
on the method of characteristics. It will be shown that a variety of 
initial boundary value problems can readily be formulated and solved 
within the basic framework, and that the technique provides a viable 
alternative to Laplace transform methods. In particular, applications 
will include, but not be limited to, the predicted response to step in
puts of flux or temperature at a material surface, or at the interface 
of two materials, illustrating the transition from non-Fourier to 
Fourier-like heat diffusion. No attempt has been made to present new 
data. 

It is recognized that some controversy exists regarding the validity 
of the wave hypothesis, i.e., continuum relationships are questionable 
in the short time intervals considered. But it will be supposed herein 
that equation (2) is acceptable. 

A n a l y t i c a l D e v e l o p m e n t 
In the ensuing development of the method of characteristics the 

following assumptions are made: (1) the heat conduction process is 
one-dimensional, (2) the thermal properties are invariant, and (3) the 
relaxation time r is known for the given material. 

Introducing the dimensionless parameters 

T* = T/T0 

q* = qL/kTo 

t* = ta/L2 

x* = x/L 

and substituting them into equations (1) and (2) yields 

qx,* + Tt.* = 0 

b2qt** + q* + Tx,* = 0 

in which 

b2 = ra/L2 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Note that B2 can be interpreted as the dimensionless relaxation time. 
As b -* 0, equation (9) becomes the Fourier law. Further significance 
will be attributed to this parameter in later discussion. Henceforth, 
the asterisk superscripts will be dropped from the dimensionless 
variables. 

Method of Characteristics. In matrix form equations (8) and 
(9) can be written 

Lo lJ Mt Li oJ \T\X loJ 

Since the equations are hyperbolic, the condition 

det[ i _J-o 

will yield two real eigenvalues, or characteristic roots [8], namely 

X = ± r 1 (13) 

(11) 

(12) 

The compatibility condition can be computed in a straightforward 
manner [8] and is given as 

dq dT 
b2 — ± 5 — + q = 0 

dt dt 

which must be integrated along the characteristic lines 

dx 

dt 
±«-! 

(14) 

(15) 

It can be shown that the characteristic lines in dimensional form are 
simply ±o, the thermal propagation speed; hence b can be considered 
additionally as the inverse dimensionless propagation speed. 

Numerical Solution. The characteristic directions in the x-t 
domain are represented in Fig. 1(a). Generally the lines are curved, 
but since constant material properties are assumed, b is constant and 
they become straight. It is necessary to integrate each compatibility 
relation, equation (14), along its respective characteristic AP or BP 
and solve for unknown values of T and q at node P. Values of the 
dependent variables at nodes A and B are known, either from initial 
conditions or from an earlier time solution. The domain is divided into 
a discrete grid Ax by At, Fig. 1(b), and the compatibility condition 
is integrated from time t to t + At: 

b2 dq ± 5 I dT + I qdt = 0 
QA.B <JTA,B *st 

or, since dt = ± bdx 

J *qp f*Tp r»xp 

dq ± I dT ± 6 qdx = 0 
QA.B *STA,B JXA.B 

(16) 

(17) 

The last integral in equation (17) is approximated by the trapezoidal 
rule formula, thus allowing the equations to be written in finite dif
ference form: 

&(qp ~ qA) + (Tp - TA) + ~(qp + qA)Ax •• 0 

Hqp - qB) ~ (TP ~TB) + - (qp + qB)Ax = 0 

(18) 

(19) 

A simultaneous solution of equations (18) and (19) will provide values 
of Tp and qp at the interior nodes: 

TP = - [TA + TB + (qA - qB)(S - Ax/2)] (20) 

qp = l(qA + <7B)(« ~ AJC/2) + TA - TB][2(b + Ax/2)]-1 (21) 

Boundary conditions can be treated generally by specifying known 
time-variable functions of either flux or temperature at the surface 
of a given material. Then the appropriate compatibility relation, 
equation (18) or (19), is used to compute the other unknown. For ex
ample, consider the case in which the boundary conditions are T(0, 
t) = / ( t ) a n d q ( l , t) = g(t), where / a n d g are known. The solution for 
<j(0, t) is, with equation (19): 

qp = [qB(S ~ Ax/2) + f(tP) - TB](b + A*/2)-i (22) 

- N o m e n c l a t u r e . 

a = thermal propagation speed, Va/r 
c = specific heat 
/ = known temperature at left-hand bound

ary 
g = known heat flux at right-hand bound

ary 
k = thermal conductivity 
L = reference length 
q = heat flux per unit area 
Qo = reference heat flux per unit area 

t = time 
T = temperature 
To = reference temperature 
x = distance 
a = thermal diffusivity, k/pc 
b = V^alL2 

Ax = finite distance interval 
At = finite time interval 
X = characteristic root 
p = density 
T = relaxation time 

Subscripts 

1 = for position where x < 0 
2 = for position where x > 0 
A,B = for nodal positions where T and q are 

known 
P = for nodal position where T and q are 

unknown 

Superscript 

* = for temporarily denoting dimensionless 
variables 
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Correspondingly, the solution for T( l , t) is found with equation 
(18) 

TP = TA- g(tP)(d + Ax/2) + qA(t>- Ax/2) (23) 

The boundary characteristic lines are illustrated in Pig. 1(a). Note 
that initial conditions are to be prescribed at all nodes along the t = 
0 axis or along an initial characteristic line. 

Stability Criterion. For the method of characteristics solution 
the Courant condition 

Ax/At > b~ (24) 

governs the stability criterion [8]. In the numerical scheme presented 
herein, the equality of equation (24) is required to be satisfied. Use 
of the trapezoidal rule to evaluate the last integral in equation (17) 
is termed a second-order approximation [10]. No additional con
straints to insure stability and convergence are necessary since the 
finite-difference grid of Fig. l(fa) approximates the true grid of 
characteristics [8]. The characteristics method can also handle sit
uations in which the characteristic root b becomes variable, e.g., due 
to nonhomogeneity of the material, or to properties becoming func
tions of the dependent variables. Techniques for numerically treating 
these conditions are available [8,10]. 

Application 
Step Input of Flux Into Semi-Infinite Material. Consider a 

single material in which initially there is no temperature or flux dis
tribution. At one surface a flux of heat is suddenly imposed, while at 
the other end a zero heat flux condition is given. In dimensionless 
terms the boundary conditions and initial values are given by 

(25) 
q(x,0) = T(x,0) = 0, 0 < x < l 

q(0,t) = l and q(l,t)=0, t > 0J 

The characteristics grid for numerical analysis of this problem is 
shown in Fig. 2. As an alternate to the initial condition stated by 
equation (25), since the disturbance to the system is initiated at x = 
0, the flux and temperature could be initially specified along the 
characteristic line t = bx emanating from the axis origin. A true 
semi-infinite analysis would require that no wave propagating from 

(a) 

r«-Ax-*^ 

Fig. 2 Characteristics grid for single material 

the surface (x = 0) be reflected from the finite end (x = 1) back again 
into the medium. Note, however, that the temperature at the surface 
is not affected by the reflected initial wave until the time 2b, that is, 
the time it takes the wave to travel twice the length of the medium. 

The initial temperature rise at the surface can be obtained from 
equation (19) by setting qp = 1, qB = TB = 0, and by allowing Ax -> 
0. The result is simply 

T(0, 0+) = b (26) 

(b) 

Fig. 1 (a) Characteristic lines in x-l domain; (b) finite difference grid 

and this relation provides a third interpretation of the parameter b, 
namely, the initial temperature at the surface when a unit input of 
heat flux is suddenly imposed. 

The numerical solution for the problem stated by equation (25) and 
with the domain given in Fig. 2 proceeds by solving equations (20) and 
(21) for Tp and qp at interior nodes and computing Tp at the 
boundaries with equations (18) and (19) wherein qp = 0 and qp = 1, 
respectively. The surface temperature at x = 0 as a function of time, 
for different values of b, is shown in Fig. 3. The Fourier solution at the 
surface, given by [5] 

T = 2Vt £ (ierfc [n/Vt] + ierfc [(re + 1)/Vt]\ (27) 

is shown for comparison. It is observed that with increasing b, the 
temperatures initially deviate further from the Fourier prediction. 
However, as time increases, the predicted temperatures will approach 
the analytic solution of equation (27) 

The effect of the right-hand side boundary condition, q(l, t) = 0, 
is related in Fig. 4; for b = 0.8, and for various times, the computed 
temperature response is shown distributed along x. Discontinuous 
wave fronts are evident and they quickly begin to attenuate. Until the 
first front is reflected from the boundary at x = 1 and returns to the 
opposite end at time t = 1.60, the temperature response at x = 0 be
haves as if the medium were semi-infinite. Thus the computed tem
perature would be the same as that given by the analytical wave so
lution, equation (A26) in Appendix B; however, subsequently the 
temperature responds with a step increase. The discontinuous wave 
patterns will continue until they have become damped out, resulting 
in Fourier-like behavior. 

It is worthy to note that the step input of flux yields a corresponding 
initial rise of temperature, as'shown by equation (26). Conversely, it 
is now apparent that if a step input of temperature were imposed at 
the surface, the corresponding flux would likewise be a step response, 
given in dimensionless form as 1/b. Even though the limiting argument 
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Fig. 3 Dimensionless temperature response at surface for different values 
of & 

leading to equation (26) is premised upon a numerical relation, the 
results are corroborated analytically in Appendix B. The hydraulic 
analog to this situation has been known for many years [17]. 

Two Suddenly Contacting Materials. In a recent study [9] 
Kazimi and Erdman analyzed the situation in which uranium dioxide 
and liquid sodium suddenly come into contact, as part of a hypo
thetical accident condition in a nuclear reactor. With simplifying 
assumptions, both the short-time (non-Fourier) and long-time 
(Fourier) behaviors of the interface temperature were analytically 
predicted using Laplace transforms; however, the intermediate, or 
transition values were not treated. 

A numerical solution using the characteristics method is formulated 
beginning with the grid shown in Fig. 5, where the interface exists at 
location x = 0. A special boundary condition can be formulated in 
which compatibility relations analogous to equation (16) are inte
grated along the characteristics AP and BP. Each of the two relations, 
more conveniently written in dimensional form, will contain coeffi
cients dependent upon its location in region one or two: 

(pca)iCTp - TA) + (qP - qA) + ~- (qP + qA) = 0 (28) 

25 -

=^ 

1 

1=160 

1 

1 , 1 8 = 0.80 

t = l.92 ]-«-

t •= 1.28 

t ' 0 . 32 

1 1 

1 

t = 0.64 

1 

-

-

1 = 0.96 

0,4 0.6 

DIMENSIONLESS DISTANCE 

Fig. 5 Characteristics grid for two materials with interface 

(pcaMTp - TB) - (qP - < 
At 

3>~-—(qp + qn) 
2.T1 

0 (29) 

Simultaneous solution of equations (28) and (29) will yield instan
taneous values of temperature and flux at the interface. The solution 
proceeds at interior regions using equations (20) and (21) with 
boundary conditions away from the interface treated in the manner 
described earlier. 

The initial temperature and flux at the interface can be obtained 
by allowing At -» 0 in equations (28) and (29), along with qA = qB = 
0. If TA = Ti and TB = T2, where T\ and T2 are material temperatures 
before contact, then 

(pca)1T1 + (pcahT2 
T(0,0+) 

q(0,0+): 

(pca)i + (pca)2 

(pca)1(pca)2(Ti - T2) 

(pca)i + (pca)2 

(30) 

(31) 

Equation 30 is identical to the one developed by Kazimi and Erdman 
[9]. 

With the data given in Table 1 the numerical solution of the in
terface temperature and flux using the method of characteristics is 
illustrated in Fig. 6. Since the time scale covers four decades, three 
different time steps are used in the analysis; even so, the values appear 
to converge after several computations. The interfacial temperature 
agrees with the early- and late-time approximations [9] and in addi
tion the transition solution is obtained. 

Conclusions 
The non-Fourier equations describing early-time transient heat 

conduction have been shown to be hyperbolic [18], with the thermal 
propagation speed given by a = Va/r. Dependent variables are 
temperature and heat flux, and time and distance are independent 
variables. The method of characteristics is applied to the equations 
transforming them to two compatibility relations which can be inte
grated numerically along characteristic lines in the time-distance 
domain. The numerical solution is formulated with dimensionless 

Table 1 Material properties for interface problem [7] 

Fig. 4 Dimensionless temperature response within medium for different 
values of dimensionless time 

P r o p e r t y 

p (gm/cm) 

c ( ca l /gm- C) 

k ( c a l / c m - s e c - C) 

T (sec) 

Ini t ial t emp. { C) 

uo7 

8. 52 

0. 12 

0. 005 

1. 69xl0~ 

3000 

13 

N a 

0. 83 

0. 3 1 

0. 0915 

6. 72x10" 1 2 

800 
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Fig. 6 Temperature and heat flux response at interface 

variables, out of which appears a significant parameter d, which can 
be interpreted as the dimensionless relaxation time or as the inverse 
of the dimensionless thermal propagation speed. 

Two numerical examples are presented which predict the tem
perature response to a step input of flux at a material surface, and the 
response of temperature and flux at an interface of two suddenly 
contacting materials. These illustrations are given primarily to show 
the efficacy of the characteristics method. This technique, which has 
become widely accepted for the analysis of hydraulic transients, offers 
the advantages of an explicit, stable, and accurate computing scheme 
combined with ease of programming. For the interface problem shown 
in Fig. 6, the computer program consists of approximately 80 FOR
TRAN statements, and with a time step of At = 1 X 10~14 s, the exe
cution time on a CDC 6500 computer is 1.022 s. 

Although not dealt with herein, the method of characteristics so
lution could readily handle a variety of time-variable boundary con
ditions or situations in which the material properties become func
tions of one or more of the dependent variables. In addition, Fou
rier-like solutions at late times can be obtained by imposing an arti
ficial multiplier upon the first term in equation (2). In this manner, 
the time step governed by the Courant condition, equation (24), is 
increased significantly. However, the multiplier must be restricted, 
so that the magnitude of the modified term remains sufficiently small. 
This technique, which compares favorably with finite element 
methods, has been applied successfully to analyze one- and two-
dimensional transient porous media flow [21]. 
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APPENDIX A 

Numerical Programming Scheme 
The nodal subscripts which appear in the integrated finite-differ

ence relations can be replaced by integer notation to facilitate nu
merical programming. Referring to Fig. 1(b), let the index i denote 
nodal position along x, and N the total number of nodes. At time t, 
qi and T;, i = 1 N are known fluxes and temperatures, respec
tively, and the unknown parameters to be computed at time t + At 
are qpi: and Tpi: i = 1 , . . . , N. At the interior nodes equations (20) and 

(21) give 

Tpi = \ [Ti-i + Ti+1 + (<?,-i - qi+l)(S - Ax/2)] (Al) 

qPi = [(<?.'-! + Qi+iW - Ax/2) + Ti-t - Ti+1][2(6 + Ax/2)]"1 

(A2) 

in which i = 2 , . . . , N - 1. The left-hand boundary condition is, for 
example 

TPl = f(t + At) = fP (A3) 

QPi = [<72(S - Ax/2) +fP- T2](& + Ax/2)-1 (A4) 

and the right-hand boundary condition could be 

QPN = S(t + At) = gP , (A5) 

TPN = 7V-1 - gP(S + Ax/2) + Q w - i (5 - Ax/2) (A6) 

After all parameters have been evaluated at time t + At, they are 
substituted into the known arrays, viz., 

Ti = TP- and qt = qPi, i = 1,. . . , N (A7) 

and computation proceeds to the next time step. Additional details 
can be found in reference [13], Chapter 3. 

APPENDIX B 

Analytical Solution for»Semi-Infinite Slab With Step 
Input of Flux or Temperature 

Consider the system of equations given by equations (8) and (9) 

<?x + Tt = 0 (A8) 
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b\t + q + Tx = 0 
The initial conditions are 

g(x, 0) = T{x, 0) = 0, 0 < x < 1 

and the boundary conditions are either 

tq{0,t) = l, t > 0 
(a) 

(b) 

q(x,t) = 0, t>0, x-

lT(0,t) = l, £ > 0 

lT(x,t) = 0, t>0, x ^ » 

(A9) 

(A10) 

(All) 

(A12) 

(A13) 

(AH) 

It is desired to obtain the solution of the temperature at the surface 
(x = 0) for boundary condition (a) and the flux at the surface for 
boundary condition (b). 

The Laplace transforms for q and T are defined as 

q(x,s) = L[q(x,t)\ and f(x, s) = L[T(x, t)] (A15) 

With the initial conditions included, equations (A8) and (A9) in the 
transform of q and T become 

dq 
— + sT=0 
dx 

dt 
(52s + l)q + — = 0 

dx 

and the transformed boundary conditions are 

(a) 

(b) 

< ? ( 0 , s ) = -
' s 

q(x, s) = 0, x -

f(x, s) = 0, x 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 

(A21) 

Elimination of q in equations (A16) and (A17) yields 

d 2 f 

dx2" 
•s(52s+ 1 ) T = 0 

The general solution is 

f{x, s) = A{s)enx + B(s)e-

(A22) 

(A23) 

in which A(s) and B(s) are dependent upon the boundary conditions, 
and 

n = 5Vs(s + 5-2) (A24) 

Consider boundary condition (a). Combining equations (A17)-
(A19) and the derivative of equation (A23) with respect to x gives A(s) 
- 0 and B(s) = n/s2, so that at x = 0 , 

no,*) = -„ (A25) 

The inverse transform becomes [14] 

T(0, t) - SW exp (- ± ) [ (1 + t)/0 (^) + th (£) ] (A26) 

where Io and / j are Bessel functions of the first kind and S is the unit 
step function. In the limit as t ~* 0+, the surface temperature is T(0, 
0+) = 5, which is identical to the limiting value in the compatibility 
relation, equation (26). 

For boundary condition (b), equations (A20), (A21), and (A23) yield 
A(s) = 0 and B{s) = lis. A combination of equation (A17) and the 
derivative of equation (A23) with respect to x at x = 0 results in 

<J(0,s) = - (A27) 
n 

and the inverse transformation is [2] 

, ( 0 , 0 - S ( t ) i « p ( - £ ) / „ ( £ ) (A28) 

As t —• 0+, the flux at the surface is q (0,0+) = 5_1 , a result which can 
also be obtained from the compatibility relation, equation (19). 
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Heat Conduction in an Anisotropic 
Medium Homogeneous in Cylindrical 
Regions—Unsteady State 
A number of problems of heat conduction in an anisotropic medium of a monoclinic sys
tem which is homogeneous in circular cylinder coordinates are solved through the use of 
Green's functions. Regions of solid and hollow cylinders, and an infinite region bounded 
internally by a cylindrical surface with boundary conditions of Dirichlet, Neumann, and 
mixed types are considered. Calculated results for two examples are shown, and the ef
fects of material anisotropy on the temperature field are discussed. This paper is the first 
of a series to be reported in the open literature concerning the analytical solution for heat 
conduction in anisotropic media which are homogeneous in circular cylinder and rec
tangular coordinate systems. 

Introduction 

Since Duhamel (1832) and Stokes (1851), the study of anisotropic 
materials has been of great interest in science and engineering, ranging 
from solid and fluid mechanics to heat and mass transfer. In recent 
years, this area of research has become increasingly important due 
to the rapidly increasing use of man-made materials in laminated and 
fiber reinforced structures of crystals in electronic equipment and for 
heat shielding materials in space vehicles. Many natural substances 
such as woods and sedimentary rocks are anisotropic. Metals which 
have undergone heavy cold forming also exhibit some kind of an
isotropy. 

In spite of the importance of anisotropic problems, analytical so
lutions have been limited to a few special cases: for instance, elastic 
stressing with the anisotropy homogeneous in rectangular coordinates 
but in a circular domain [l],2 and in cases where the displacement 
components can be expressed in terms of power functions of spatial 
variables [2]. A shorter account on elastic stresses, thermal stresses, 
and elastic waves in orthotropic and anisotropic media can be found 
in [3]. Transport processes in anisotropic, porous media were studied 
by Neale [4] and Whitaker [5]. Two-dimensional analyses of thermal 

1 Many results of this study were obtained in early 1973 while the second 
author was with the State University of New York at Buffalo. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
April 28,1976. 

stresses in a half-space and in a slab were reported by Clements [6] 
and Tauchert and Akroz [7]. 

Reported results of analytical solution of anisotropic problems with 
heat conduction- as the principal subject have been very limited. 
Turhan and Tuna [8] extended an "approximate continuum theory 
on elasticity" to the solution of heat conduction in infinite composite 
slabs and cylinders, but no result for the anisotropic case was reported. 
An exact solution of the same problem was reported by Padovan [9, 
10] by employing the method for the solution of finite composite slabs 
and cylinders of isotropic media, so that eigenvalues in three direc
tions are of discrete spectra and can be easily determined.3 It is to be 
pointed out, however, that the exact solution for infinite composite 
slabs and cylinders of even isotropic media has not been found to date 
because of the difficulty in the evaluation of eigenvalues with respect 
to the coordinate normal to the laminates. This difficulty is due to the 
fact that, if the laminates extend to infinity in one direction, then 
eigenvalues in that direction are to be of continuous spectrum. 

There have been several investigations [11, 12] of the heat con
duction in regions of orthotropic media which can be conveniently 
expressed in terms of rectangular coordinates. The analysis for 
orthotropic media in cylindrical regions is more complicated even for 
two-dimensional cases [13, 14]. 

Numerical solution of anisotropic problems has become possible 
since the advent of electronic computers and is very useful, especially 
for arbitrarily shaped domains and variable properties. Finite dif
ference and finite element methods are commonly used. However, the 
numerical solution of an anisotropic problem is more complicated 

1 For isotropic media 
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than that of the isotropic case. Katayama, et al. [15] devised a scheme 
using a finite difference method and found his calculated results in 
good agreement with his experimental data. Chang, et al. [16] em
ployed an integral-equation method to calculate the temperature and 
heat flux distributions in a square, a circular disk and an annular disk. 
Cobble [17] investigated the heat conduction with variable properties 
in a wedge by first transforming the partial differential equation into 
an ordinary differential equation which was then solved numerically. 
Most of the foregoing studies were made for boundary conditions of 
Dirichlet type. For boundary conditions other than the Dirichlet type, 
the calculation would become more complicated. For problems in an 
unbounded or partially bounded region, particularly in steady state, 
the numerical solution will be in general very difficult even on high 
speed computers. 

Experimental information regarding thermal conductivity coeffi
cients of general anisotropic materials is very scarce, except for some 
orthotropic systems and certain crystals [18,19]. For the experimental 
study of thermal conductivity coefficients of an anisotropic solid, it 
is usual to apply the analytical solution of a one-dimensional case (i.e., 
to assume the temperature dependence of only one spatial coordinate) 
which is in the same form as that for an isotropic medium, for instance 
[18,20]. However, as was pointed out by Leknitski [2], the simplication 
of two-dimensional analysis is useful only if a body processes a plane 
of material symmetry. Therefore, in order to obtain reliable infor
mation, analytical solutions of multidimensional anisotropic problems 
are needed. 

The senior author of this paper has worked on this research for a 
number of years. It was found that the most difficult part in the an
alytical solution of anisotropic problems is to satisfy the boundary 
conditions, especially of the mixed (radiative or convective) type. 
According to the degree of difficulty and the methods of solution, it 
is convenient to divide anisotropic problems into three classes: the 
first class considers the region bounded by not more than two surfaces 
which are normal to any one spatial coordinate; the second class 
considers the region bounded by surfaces on which boundary condi
tions of the mixed type is limited to only two surfaces normal to any 
one spatial coordinate; and the third class considers boundary con
ditions of the mixed type on more than two surfaces. We shall report 
our results in the sequence of these classes. Another difficulty results 
from the usual belief that the classical method of separation of vari
ables is not applicable, for instance [9, 21], According to our studies 
in this paper and ensuing ones, it was found that this belief is not true, 
at least in the broad sense of the technique of separation of variables. 
It was also found that the analytical solution for temperature is in 
general difficult to obtain, but the Green's functions can be obtained 
with less difficulty and for most cases they can be expressed in terms 
of tabulated functions. Therefore, the use of Green's functions is not 
only a convenient method but also is probably necessary. Once the 
Green's function is known, the temperature can be readily obtained 
by the use of Green's formula. 

This paper is concerned only with the analytical solution for heat 
conduction in an anisotropic medium of a monoclinic system which 
is homogeneous in circular cylinder coordinates.4 Boundary conditions 

4 An anisotropic medium which is homogeneous in one coordinate system 
becomes heterogeneous in other coordinate systems. 

of Dirichlet, Neumann, and mixed (or convective) types are consid
ered for four different regions: (1) solid cylinder and (2) hollow cyl
inder of infinite and finite lengths; and (3) an infinite region bounded 
internally by a cylindrical surface. Infinite region is also considered. 
An unsteady problem is defined here as one in which the temperature 
depends on time, either periodically or transiently, or in any other 
manner. For brevity we shall refer to Dirichlet, Neumann, and con
vective boundary conditions as the first, second, and third types, re
spectively. All the problems in this paper belong to the first class. 

According to the foregoing findings, the determination of Green's 
functions will be the principal subject in this paper and a series of 
subsequent ones. To systemize the solution for problems in bounded 
and unbounded regions, we shall construct the Green's functions by 
the method of integral transforms, though the classical method of 
separation of variables is sometimes more useful for problems in 
bounded regions as illustrated in [22], 

F u n d a m e n t a l E q u a t i o n s and F o r m a l So lu t ions 
Consider the heat conduction in an anisotropic medium of a 

monoclinic system which is homogeneous in circular cylinder coor
dinates and is bounded either externally or internally or both inter
nally and externally. All thermo-physical properties of the medium 
are assumed constant, and the anisotropy is in the plane normal to 
the axial direction. Then the differential equation to be solved for 
unsteady state is in the following form [18, 20]: 

r dr \ 

dT\ , 1 d2T n I d2T 
r—) +fe22 + 2/ei2 

dr) r2dd2 rdrde 

+ ^ 3 3 — r - p c — = -Q(r,6,z,t) (1) 
dzl dt 

in a given region Q for t > 0. According to irreversible thermodynamics 
[23], the following relations must hold: 

ku > 0, kukjj - kij2 > 0 for i T* ;', hj s 0 

The boundary conditions may be written in the general form 

dT 
b + hT = fi on S for t > 0 

dn+ 
(2) 

where 6 and h are constants and either one may be unity or zero so 
that boundary conditions of the first, second and third types are all 
included. In equation (2), if S represents the surface, or surfaces, 
normal to z-axis, then d/dn+ is the derivative with respect to the outer 
normal of the surface or surfaces; if S denotes the cylindrical surface, 
or surfaces, then d/dn+ is the transverse derivative, or derivative with 
respect to the outer conormal, i.e., 

dn-

id 1 
- = ± ( — +1/12-

\dr r 6W 

where the minus and plus signs are for internally and externally cy
lindrical surfaces, respectively. 

The initial condition on T may be written as 

T = F(r, e, 2) infl fort = 0 (4) 

If G (r, 6,z,t\ r', 6',z',t') is the Green's function associated with the 
unsteady problem equations (1), (2), and (4), then the temperature 
can be obtained by the use of Green's second formula [24] 

•Nomenclature-

b = 1or 0 defined in equation (2) 
c = specific heat 
/ = boundary data defined in equation (2) 
F = initial data defined in equation (4) 
G = Green's function 
h = heat transfer coefficient/fen 
Ja = Bessel function of first kind order a 
kij = thermal conductivity coefficients 
t = length of cylinder 
n = outward normal to surface, or 1, 2, 3 . . . 

n+ = outward conormal to surface 
r = radial coordinate 
S = surface 
T = temperature 
t = time 
Ya = Bessel function of second kind order 

a 
z = axial coordinate 
p = density 

^mnA "33 

« i = kn/pc 

y>ij = kij/ku 

S = Dirac delta function 
d = (»22 - "122)1/2 

e = 1 for n = 0, 2 for n ^ 0 
8 = angular coordinate 

Subscripts 

ij = 1, 2, 3 
s = pertaining to surface 
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T(r, 8,-z, t)= f F(r', 8', z')G(r, 8, z, t\r', 6', z', 0) 
Jn 

Xdn(r',B'z')+— P d t ' C Q(r', 8', z', t') 
pc Jo Ja pc 

X G(r, 8, z, t\r', 8', z', t')dQ(r', 8', z') 

• «i f dt' C f(r', 8', z', t' 
Jo Js 

X —-G(r, B, z, t\r', 6', z', t')dS(r', 8', z') (5) 
dn+ 

where fi and S are the domain and surface, or surfaces, to be con
cerned; and the presence of a i is because we shall divide equation (1) 
by fen as has been done in equations (2) and (3). If the surface con
ditions are of the Neumann type, i.e., 6 = 1 and h = 0 in equation (2), 
then the last integral in equation (5) is replaced by 

-«i C dt' C f(r',9',z',t')G(r,9,z,t\r',9',z',t')dS(r',9',z' 

(6) 

Determination of Green's Functions 
Since the Green's function satisfies the homogeneous differential 

equation, except at the source point, and homogeneous initial and 
boundary conditions, we can write 

G(r, 8, z, t\r', 8', z', t') = GAz, t\z', t')G2(r, 8,t\r', 8', t') (7) 

where Gi(z, t\z', t') satisfies 

d2Gx 1 8GX 

dz2 aiv33 dt "1V33 

Gi = 0 f o r t = 0 

Hz - z')i(t - t') (8) 

and appropriate boundary conditions; and G2(r, 8, t\r', 8', t') satis
fies 

1 d 

r 

dG2\ 2//12 32G2 l>22d2G2 

dr V dr ) r drdB r2 d82 

1 <3G2 _ S(r - r')b(8 - 8')b(t - t') 

ct\ dt 

G, = 0 for t = 0 

a\w(r) 
(9) 

and appropriate boundary conditions, where w(r) denotes a weight 
function yet to be determined. 

For —<*> <z < °°, the solution of equation (8) is well-known 

i r (z - z')2 i 
Gi(z, t\z', t')= exp b (.10) 

2VTraii>3s(t - t') L Aaivwit - t') J 
For a finite cylinder, 0 < z < C, with boundary conditions of the 

third type, 

dGi 
h i — i - / i a G i = 0, z = 0; 

dz 
b2—

± + /i2G1 = 0, 
dz 

z = e 

(11) 

we have 

where 

G1(z,t\z',t')=Y.Zn(z)Zn(z')e-»i™»<Kl-n (12) 
ra=l 

Zn(z) = 

[2(62
2ton

2 + h,22)]1/2(biu)n cos oi„z + hi sin o>nz) 

[(b^n2 + /l1
2)[^(62

2a.„2 + h2
2) + b2h2) + b^ib^n2 + h2

2)}1'2 

and o)„ are the roots of the transcendental equation 
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tan o> t • 
q)(bife2 + b2hi) 

&ib2oj2- hih2 

(14) 

Gj(z, t\z', t') with boundary conditions of the first and second types 
can be obtained by specializing equation (13) and (14). For the latter, 
a term XIt is to be added to equation (12). 

Thus, our problem now is to find the solution of equation (9) for 
various regions with various boundary conditions. To this end, we 
assume that the complex finite Fourier transform can be applied to 
remove the variable 9, i.e., the Fourier transform of G(r, 9, t\r', 8', t') 
defined by 

G2(r, t\r', t'\ 0',n)= f* G2(r, 8, t\r', 9',t') e-in0d8 (15) 
J —7T 

exists and its inverse is 

G2(r,8,t\r',8',t') = — £ G\r, t\r'', V'; 9'', n)ein0 (16) 

where i = V—1. Following the usual procedure for the construction 
of the Green's functions by the Fourier transform [25], we obtain 

<92G2 , (1 + 2 in m) dG2 ^n2^ 1 <5G2 
'+ T"G2 

(13) 

dr2 dr «i dt 
-inll' 

-&(r-r')&(t-t') (17) 
aiw(r) 

In order to obtain a general formula for all the Green's functions as
sociated with problems to be concerned in this paper, we now follow 
the classical method to seek the solution of equation (17) in the 
form 

G2(r, t\r',t'; 8', n, X) = 4>{r\r', 8', n, X)e~«i*2«-''> (18) 

where X is an arbitrary constant and <p(r\r', 8', n, X) satisfies 

1 + (2re</i2 / 2 2 n \ ein0' 
r + i H , / / + ( x 2 - W = —&(r-r') (19) 

r \ rz i w(r) 
with superscript primes denoting derivatives with respect to r. This 
equation can be rewritten in the self-adjoint form with weight function 
w(r) = ri+2'n»i2 The solution of equation (19) has the form 

i(r\r', 9', n, X) = R(r\r', n, X) r-inmr''nn2e-ine' 

where R(r, n, X) satisfies 

1 / 82n2\ 1 
R" + -R' + X2 - SJL) R = - - Mr - r') 

r \ r2 I r 

(20) 

(21) 

and appropriate boundary conditions. The solution of equation (21) 
will involve Bessel functions of orders ±nft. It is important to note that 
equation (21) involves only re2, while 4> in equation (20) involves both 
n2 and n. Therefore, we do not have to take both +n and — n in the 
solution of equation (21), but both positive and negative values of n 
of the exponential and power functions in equation (20) must be taken 
into account. 

We now substitute equation (20) into equation (18) and setting the 
result into equation (16) to obtain 

G2(r,6,t\r',e',t')= — Z £ R(r|r ' , |n | f t X) 
2-JT x n=-«> 

r r 

— exp in(8 — 8') — inv\2 In < 

G2(r, 8, t\r', 8', * ' ) = — £ R(r\r', reft X) 
2-7T„=0 

nXHt - t') (22) 

X cos re | (8 - 9') - ni In ^ 1 e""^ 2 1 ' - ' ' 1 (23) 

where e = 1 for re = 0 and e = 2 for re ^ 0. 
It can be easily shown by substituting equation (22) into the general 

boundary condition on G2(r, 8, t\r', 8', t'): 
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b—? + /iG2 = 0 fo r r = rs 
dn+ 

(24) 
X [Jni,(\mnr') - hmnYnll(Xmnr')] (32) 

where rs represents the radius or radii of the cylindrical surface or 
surfaces that equation (24) is satisfied, if R satisfies the boundary 
conditions: 

bR' ±hR = 0 for r = rs (25) 

where the plus and minus signs have been defined in equation (3). 

Solid Cylinder 
Consider a solid cylinder of radius r$ with boundary condition of 

the third type on the cylindrical surface. The solution of equation (21) 
satisfying the boundary condition equation (25) at r = ro and bounded 
at r = 0 is the Bessel function of the first kind of order nfi, 

R(r\r', n/3, X) = Jnfi^mnr)Jnli(\mnr')/Nmn, n0 > 0 (26) 

where Am„ are the roots of the transcendental equation 

XJ„/(Xr0) + hJnn(\r0) = 0 (27) 

and the norm, Nmn, is 

1 

where Ynp is the Bessel function of the second kind and order n, 

'XmnJnfi'CXmnTi) + h2Jnp(\mnr2) 

Ynp'(\mnr2) + h2Yni](\mnr2) 

Xmn are the roots of the transcendental equation. 

[0XYn/3'(Xr2) + /i2Yn/3(Xr2)][iSX(/„/(Xri) - hvJ^CKn)] 

- [0XJ„/(Xr2) + h2Yn0(Xr2)}[l3\YnP'(Xri) - hiYn/S(Xn)] = 0 

(33) 

(34) 

N,ri ;(B0
2 + XmnW ~ re2/32)J„„2(Xm„r0) (28) 

with Bo = hro which is usually called Biot number. We substitute 
equation (26) and (28) into formula (23) and the result to equation 
(7) to obtain the Green's function with the boundary condition of the 
third type at the cylindrical surface, 

G(r, 8, z, t\r', 8', z', t') = - G i ( z , t\z', t') 
TV 

2Jnp(Xmnr)JnlJ(\mnr') 
X L T, 

^ „=o(B0
2 + Xm„2r0

2 + n202)JnH\mnro) 

•cos re ( 0 - 6 O - c i 2 l n ^ l e - ' " x < » " 2 < ( - ( ' > (29) 

where Gi(z, t\z', t') has been given in equation (10) and (12) for in
finite and finite cylinders. 

The Green's function for the boundary condition of the second type 
on the cylindrical surface can be found in the same way, or by spe
cializing equation (29) as follows: 

G(r,0,z,t\r',0',z',t')=-Gl(z,t\z',t') £ £ 
T m=ln=0 

1 + 
2^ng(Xmn'')<Jn/3(Xmnr

/) 

(X m n W-n 2 /3V 2 (X m „7-o) 

• cos n \(8 - 8') - K12 In - H e-»^mnHt-f) (30) 

where Xmn are the roots of Jnp'(Xro) = 0. The Green's function for the 
boundary condition of the first type on the cylindrical surface is 

G(r,0,z,t\r', B'.z.t') =-G1(z,t\z',t') 

IT 

" ™ Jnp(Xmllr)Jn(\mnr') 

m = l n = 0 

1 n 1(8 - 8') - i/12 In -t \, ,i\m,Ht-f) ( 3 1 ) 

where \mn are the roots of Jn (\TJ0) = 0. 

Hollow Cylinder 
Consider a hollow cylinder of inner and outer radii n and r2 and 

suppose that the convective heat transfer coefficients are different 
at the inner and outer surfaces. The solution of equation (21) satis
fying boundary conditions (25), with 6 = 1 and h = hiatr = ri and 
h = h2 at r = r2, is 

R(r\r', n/3, X„m) = —— lJnfi(.\mnr) - hmnYnf)(\mnr)] 
Nmn 

and the norm 

1 
Nmn |[«/n0(Xmn',2) 

- hmnYnl!(\mnr2)}HB2
2 + \n 

- [ « M W i ) - ftmnY^(Xm„r1)]
2(B12 + \mnW - n2P2)]} (35) 

Bi = hirr, B2 = h2r2 

Substituting equation (32) into formula (23), we obtain the Green's 
function associated with the unsteady problem subject to boundary 
conditions of the third type at the inner and outer surfaces 

G2(r, 6t\r', 0', t')=- E E — - [JnnXmnr) - hmnYntJ(\mnr)} 

T m=l n=oNmn 

• [JnlA^-mnf') ~ hmnYnjj(\mnr')\ 

cos n(0-O'-v\n - ) e - " W C ~ n (36) 

Green's functions for boundary conditions of the first and second 
types, or one type at r\ and another type at r2 can be found by the 
same way, or by specializing equation (36) to each case. 

If we substitute equation (36) into equation (7), we obtain the 
Green's functions G(r, 0, z, t\r', 8', z', t') since Gi(z, t\z', t') has been 
given in equation (12). 

Infinite and Internally Bounded Regions 
For an infinite region or a region bounded internally by a cylindrical 

surface of radius r0, we may seek the solution for G2(r, 8, t\r', 8', t') 
in the form of 

u (r, t) exp T in (B - 8' - v12 In -) \ (37) 

which satisfies the differential equation of G(r, 8, t\r', 0', t') if u(r, 
t\r', t') satisfies the equation 

d2u j _ 3 u _ ^ ! _ . l du. S(t - t')S(r - r') 
(38) 

dr2 r dr r2 ax dt air 

For infinite region, we may remove the variable r from equation (38) 
by the Hankel transform defined by [26] 

u(t, X, ra/3) = f u(r', t) Jnfi(\r')r'dr' 

and its inverse, 

u(r, t) = f" u(t, X, nfi) Jnfi{\r)\d\ 

(39) 

(40) 

We apply equation (39) to equation (38) to obtain 

V + ai\2u = Jnf!(Xr'Wt - t') (41) 

The solution of equation (41) satisfying the zero initial condition is 

u(t, K n/3) = . M X r O e - ^ 2 " - ' ' ) (42) 

Substituting equation (42) into equation (40) and the result into 
equation (37) and keeping n positive in u, we obtain 

G2(r, 0, t\r', 8', t') = ^~T. cos n (fl - 8' - i>u In -) 
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' f0°
,Jn,i{ 

(Xr)Jne(Xr')XdX (43) 

We multiply Gi(z, t\z', t') of equation (10) to equation (43) to ob
tain 

e T z — z ' 2 1 
G(r,6,z,t\r', O'.z'.t') = zexp 

47rV aiv33(t - t') L 4ainas(t - t') J 

• £ c o s n | (9-9')~Vl2ln-] f°° Jn/3(X/-)J„s(Xr')XdX (44) 
re=0 L r J »/0 

This is the fundamental Green's function, or fundamental solution, 
for an anisotropic medium of a monoclinic system which is homoge
neous in circular cylindrical coordinates. 

For the internally bounded region, we may remove the variable r 
from equation (38) by the Weber's transform defined by [27]: 

u(t, 8, n0) = f u(r', t)Un„(Xr')r'dr' 
Jfro 

and its inverse: 

u(r,t)= 1 u(t,X,n{5) XdX 
Jo 

(45) 

(46) 
'o Vnff(Xr0) 

where, for boundary condition of the first type, 

Untl(Xr) = Jnli(XrQ)YnlAXr) - Ynli(Xr0)Jnli(Xr) (47) 

Vnl](Xr0) = JnflH\r0) + Yn„
2(Xr0) (48) 

and, for boundary condition of the third type, 

Unfi(Xr) = [XY„/(Xr0) - hYnp(Xr0)}Jnll(Xr) 

- [XJnll'(Xr0) - hJnli(Xr0)}Ynfi(Xr) (49) 

V„n(Xr0) = [XJnl]'(Xr0) - hJnfi(Xr0)]
2 

+ [XYnfl'(Xro)-hYn0(Xra)]
2 (50) 

Applying equation (45) to equation (38) and following the same 
procedures as those in obtaining equation (44), we obtain 

<; r (z - z ')2 

G(r, 9, z,t\r', 9', z', t') = ==exp [ 4-n-VITaii>3a(t — t') L iaiv^(t — t') 

• £ cos n \{9 - 9') - „ l 2 In - I 
n=o L r'A Jo Vnij(Xro) 

. e-alwt-n xdx (5i) 

Examples 
A solid cylinder without heat generation and initially at zero tem

perature is subjected to convective heat transfer at the surface from 
the surrounding fluid whose temperature varies with the angular 
position only 

dT 

dn 
- + hT = f, r = r0 t>0 (52) 

where / = A sin 9 with A being a constant. We substitute equation (36) 
for G(r, 9, t\r', 9', t') into equation (5) to obtain 

T ( r > e, t) = ^ 2 £ Jo(Xm0r/r0) 1 ( i _ g _ w „ i ( / r , 2 ) 

kU m = l </o(Xmo) Am()2 + ^0 

Jti(Xmir/r0) sin [0 - i/i2 In /-/r0) 

JvCXmi) (Xml
2 - /32 + (30

2) 
( 1 _ r x „ ! V , W (53) 

where Xm„ are the roots of 

XJ/(X) + PlipiX) = 0 (54) 

If the initial temperature of the cylinder is equal to A sin 9 with 
homogeneous boundary condition of the third type, we find 

Xm\2Jji(Xmir/r0) T(r, 9, t) = - 2 T 0 Y, e-^i^it/ro-
m-i ( B o 2 + X m l

2 - 0 ) J 3
2 ( X m ) 

• cos /0 - i/j2 —j J sin (K12 In f)t/^(Xmlf)fdf 

+ sin (e - „12 yj j * o
 1 cos ( n 2 In ^^(X™!^^df ] (55) 

where Xmi are the roots of equation (54). 
Note that equations (53) and (55) reduce to those of corresponding 

isotropic problems, and that the integrals in equation (55) cannot be 
expressed in tabulated functions. 

Some calculated results of equation (53) and of the isotropic case 
are shown in Tables 1 and 2. The effects of orthotropy and anisotropy 
on the temperature field can be easily seen from equation (53) as well 
as the tables. For the same value of 1/12, the parameters /3 characterizes 
the orthotropy. The larger the value of /3, the lower the temperature 
in the upper half of the circular area (0 < 9 < IT) and the higher it is 
in the lower half (IT < 0 < 2ir) in comparison with the temperature in 
an isotropic medium. For isotropic and orthotropic media, the tem
perature fields are symmetric with respect to the axial plane passing 
through 9 = ir/2, while for an anisotropic medium, the temperature 
field is asymmetric. For the same value of/3, the increase of i>i2 shifts 
the maximum and minimum temperatures clockwise. For (3=1, the 
surface temperature is the same as that for the isotropic medium. The 
orthotropy or the anisotropy has no effect to the temperature at r = 
0. 

Discussions and Concluding Remarks 
All the Green's functions obtained previously reduce to those for 

orthotropic media by setting v\i = 0 and to those for isotropic media 
by putting p& = 0 and f) = ;<33 = 1. 

It is seen from the expressions of Green's functions obtained above 
and the integral equation (5) that an analytical expression for the 
temperature is difficult to obtain, if the initial condition or the heat 
production is not zero. It is also seen from these expressions that the 
homogeneous equation (1) can be separated into ordinary differential 
equations, though the separation process is slightly more complicated 
and more restrictive than that for isotropic problems [21]. However, 
it may be mentioned here that it is more convenient to use the sepa
ration of variables for cylindrical regions bounded by two axial planes 
as will be shown in the ensuing paper. 

If the medium is of general anisotropy, or anisotropy only in r~z 
plane, the method used in this paper is still applicable for the solution 
of problems of the first class, but the solution is more complicated, 
involving confluent hypergeometric functions with complex argu
ments. It also applies to problems of the first class for general aniso
tropic media homogeneous in rectangular coordinates, although it is 
more convenient to solve this particular class of problems by the 
transformation of coordinates [28]. 
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Table 1 Dimensionless temperature distribution, T* = 77(Ar0/fcu), for |3 = 2.0;v l2 = 0.5, Bo ; 

T* = 0.750 at r = 0 for both media 

r/r0 

0.2 0.4 0.6 0.8 

1.0,Fo = 1.0; 

1.0 

e 
0° 

45° 
90° 

135° 
180° 
225° 
270° 
315° 
360° 

Iso 
0.754 
0.825 
0.854 
0.825 
0.754 
0.684 
0.654 
0.684 
0.754 

Aniso 
0.764 
0.768 
0.764 
0.754 
0.744 
0.740 
0.745 
0.754 
0.764 

Iso 
0.766 
0.907 
0.965 
0.907 
0.766 
0.625 
0.567 
0.625 
0.766 

Aniso 
0.790 
0.817 
0.814 
0.783 
0.742 
0.715 
0.718 
0.749 
0.790 

Iso 
0.785 
0.996 
1.080 
0.996 
0.785 
0.573 
0.486 
0.573 
0.785 

Aniso 
0.815 
0.888 
0.901 
0.845 
0.754 
0.681 
0.668 
0.724 
0.815 

Iso 
0.809 
1.090 
1.210 
1.090 
0.809 
0.527 
0.411 
0.527 
0.809 

Aniso 
0.833 
0.976 
1.020 
0.943 
0.786 
0.642 
0.597 
0.676 
0.833 

Iso 
0.829 
1.180 
1.320 
1.180 
0.829 
0.484 
0.340 
0.484 
0.829 

Aniso 
0.829 
1.060 
1.150 
1.060 
0.829 
0.601 
0.506 
0.601 
0.829 

Table 2 

r/r„ 

Dimensionless temperature distribution, T* -
T* = 0.750 at r • 

THArJk^^ioxp-
: 0 for both media 

0.75; u12 = 0.2, Bo = 1.0, Fo = 1.0; 

0.2 0.4 0.6 0.8 

Iso Aniso Iso Aniso Iso Aniso Iso Aniso 

1.0 

Iso Aniso 
0° 

45° 
90° 

135° 
180° 
225° 
270° 
315° 
360° 

0.754 
0.825 
0.854 
0.825 
0.754 
0.684 
0.654 
0.684 
0.754 

0.807 
0.905 
0.914 
0.829 
0.701 
0.604 
0.595 
0.679 
0.807 

0.766 
0.907 
0.965 
0.907 
0.766 
0.625 
0.567 
0.625 
0.766 

0.817 
0.999 
1.040 
0.926 
0.714 
0.532 
0.487 
0.605 
0.817 

0.785 
0.966 
1.080 
0.966 
0.785 
0.573 
0.486 
0.573 
0.785 

0.824 
1.080 
1.170 
1.030 
0.745 
0.486 
0.402 
0.542 
0.824 

0.809 
1.090 
1.210 
1.090 
0.809 
0.527 
0.411 
0.527 
0.809 

0.831 
1.160 
1.290 
1.130 
0.788 
0.457 
0.332 
0.487 
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0.829 
1.180 
1.320 
1.180 
0.829 
0.484 
0.340 
0.484 
0.829 
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1.220 
0.829 
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0.273 
0.436 
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Thermal Traces of a Buried Heat 
Source 
An exact solution in series form is presented for the steady temperature distribution in a 
semi-infinite solid medium bounded internally by a spherical inclusion of uniform tem
perature. Heat transfer at the interface is via convection. The solution is obtained by 
means of a transformation to a bispherical coordinate system. Surface temperatures, 
which are of engineering interest for monitoring purposes, are also calculated. 

1 Introduction 

Interest in the monitoring of underground heat sources (sinks) 
arises in various fields, such as the use of storage tanks for fuels and 
chemicals, prospecting by satellite thermography, nuclear engineering, 
etc. One of the simplest ways of detecting the existence of such sources 
is by measurement of their effects on the surface i.e., the temperature 
differences produced on the surface. 

In the present paper, the surface temperature distribution due to 
the existence of a buried heat source is studied analytically. A 
spherical heat source is chosen in order to focus attention on the ef
fects of the thermodynamical parameters and the interaction with 
the interface, without complications arising from the source shape. 
Also, this is one of the most efficient shapes for storage tanks. 

Solutions of potential problems relating to bodies near plane 
boundaries are usually obtained approximately by means of reflec
tions. In this method successive approximations resulting from 
planting a series of image singularities are obtained. It should be noted 
that application of the method of reflections for the present problem 
would be extremely difficult due to the convection boundary condition 
(cf. Section 2) used at the interface. So-called shape factors [l]1 have 
also been applied to correlate simple source fields with constraints 
due to the existence of bounded surfaces. 

A different approach is taken here. The analysis is performed in 
an orthogonal coordinate system tailored to the specific problem. As 
a result of this transformation, the boundary conditions become 
simpler and an exact solution is achieved. The coordinate system 
chosen here is the bispherical system. The equation for steady heat 
conduction (Laplace's equation) remains separable. 

An exact solution in series form is obtained for the steady tem
perature distribution in the semi-infinite solid medium bounded in

ternally by a spherical inclusion of constant and uniform temperature. 
It is interesting to note that this is the three-dimensional analogue 
of a plane problem mentioned by Carslaw and Jaeger [2] in a list of 
yet unsolved tasks in heat conduction for which the possibility of an 
exact solution exists. Solutions using simpler albeit nonconventional 
coordinate systems have recently been presented by Yovanovich 
[3]. 

2 Analysis 
Consider a sphere (Fig. 1) of radius R buried at a depth D > R in 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
May 27, 1976. Fig. 1 The bispherical coordinate system 
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a m e d i u m of uniform t h e r m a l conduc t iv i ty k. T h e d e p t h D is mea

sured from a flat free surface a t which t h e r e exists convect ion wi th 

film hea t t ransfer coefficient h. T h e in te rna l conduc t iv i ty of t h e 

sphe re (which can be solid or fluid-filled) is t a k e n to be m u c h larger 

t h a n t h a t of t h e e a r t h a r o u n d it, so t h a t t h e sphe re t e m p e r a t u r e Ta 

is uniform. T h e t e m p e r a t u r e of t h e fluid m e d i u m (a tmospher i c air 

or water ) as well as t h a t of t h e solid m e d i u m far from t h e interface is 

t aken as Tb(Tb ^ Ta). Tb can be e i ther h igher or lower t h a n Ta, 

cor responding t o a cooled or hea ted source, respect ively. T h e case of 

s teady ax i symmet r ic (in i/-, cf. Fig. 1) hea t t ransfer is s tud ied . 

T h e equa t ion defining h e a t t ransfer in t h e semi- inf in i te solid m e 

d i u m between t h e sphe re and t h e interface reduces , u n d e r these 

condit ions, to Laplace 's equat ion. In t h e Car tes ian coordinate sys tem 

t h e spher ical geomet ry resul t s in a complex formula t ion of t h e 

b o u n d a r y value p rob lem. On the o the r h a n d , a spher ica l coord ina te 

system leads to similar problems when writ ing the boundary condition 

of t h e flat surface. Accordingly a b i spher ica l coord ina te sys tem is 

used. 

In this sys tem (Fig. 1) coaxal spheres are m a p p e d as surfaces of 

constant r\. T h e surfaces 6 = constant are spindles for 0 > ir/2, a sphere 

a t 0 = jr/2 and apple shaped surfaces for 0 < jr/2. T h e line connect ing 

the sphe re centers is defined by 0 = -K be tween t h e l imi t ing po in t s of 

the system (i) = ±°°), and 0 = 0 from the limiting points outwards. T h e 

met r i c coefficients of th i s sys tem are [4]: 

Svv i 
(cosh?; — cosfl)2 Si4 : 

' s i n 2 0 

(coshij — cosfl)2 (1) 

where 2q = 2 V D 2 — R2 is t h e d i s tance be tween l imi t ing po in t s . 

Laplace ' s equa t ion in t e r m s of t h e b ispher ica l coord ina tes 

V2</> = 0 
(coshj) — cosO 

q2 sin0 

:H^( d<p\ 

is p - separable with p •• 

be wr i t ten as 

; (cosh?) 

di; \cosh?) — cos# d-n/ 

d / sin0 i)<j>\ 

dO \coshri — cost) dd/ 

- cos0) _ 1 / 2 and a general solution can 

(2) 

</) = (coshr) - £) 1 / 2 Y. (A„ coshmjj + Bn sinhmi)) 

X [CnPniO + EnQn(0] (3) 

where £ = cosfl, n is the set of non-negative integers, m — n + \ , Pn and 

Qn are Legendre po lynomia ls of t h e first a n d second kind, respec

tively, and An, Bn, C„, E„ a re c o n s t a n t coefficients t o be es tab l i shed 

wi th t h e aid of the b o u n d a r y condi t ions . T h e funct ion ij> is t h e non-

d imens iona l t e m p e r a t u r e excess in t h e solid m e d i u m defined by <j> = 

(T - Tb)/(Ta — Tb). T h e b o u n d a r y condi t ions in d imens iona l 

quan t i t i e s are: 

On the i so thermal sphere 

T=Ta a t ? ) : (4a) 

where 

In t h e doma in of t h e p r e s e n t solut ion t h e t e m p e r a t u r e is finite a n d 

bounded be tween the sphere and far-field t empera tu res . For t h e case 

of t h e hea t ed sphe re th i s is wr i t t en as 

Tb<T<Ta for i) > -a 

On t h e interface, where n is t h e no rma l to t h e surface 

d T 
k— + h(T-Tb) = 0 a t ) ) = 0, 

bn 
>>0 

(46) 

(4c) 

In t e r m s of t h e d e p e n d e n t var iable <t> (excess t e m p e r a t u r e ) t h e 

b o u n d a r y condi t ions are: 

and 

</> = 1 a t ?) = — a 

Q <<!><! for - o < i) 

drj> qh 
(cosh?? — £) 1 V = 0 on?) = 0 

5T) k 

(5a) 

(5b) 

(5c) 

Q„(£) is unbounded at £ = ± 1 and, therefore, En = 0, from equation 

(5b). Wr i t ing An = AnC„ a n d Bn = BnCn t h e nond imens iona l t em

p e r a t u r e excess, </> is 

<t> = (cosh?) - f ) 1 / 2 £ ; [A„ coshmj; + B„ s inhmr,]P„(£) (6) 
n=0 

Subst i tu t ion of the condition of constant t empera tu re on the sphere 

(5a) leads to 

S (An coshma - J3„ s i n h m a ) P „ ( f ) = (cosha - £ )~ 1 / 2 (7) 
n=0 

T o ob ta in a condi t ion re la t ing t h e coefficients An a n d Bn, t h e 

r i gh t -hand side of equa t ion (7) is now e x p a n d e d in t e r m s of a series 

of Legendre polynomials , such t h a t 

where 

(cosha - 0~u'z = E Fn(n,a)Pn(i) 
)i = 0 

Fn (n, a) = An coshma — Bn s i n h m a 

(8) 

Mult ip ly ing t h e iden t i ty (8) by Pr(£), ( integer r ) , and m a k i n g use 

of the or thogonal i ty p roper ty of Legendre polynomials by in tegra t ing 

from — 1 < £ < 1 t h e r i gh t -hand side of (8) becomes 

and 

Y. Fn C Pn (OPAOdi; = Fn C1 Pn
 2(£)d£ = — — Fn 

n=o J-i J-i 2n + 1 

2n + l r l Pn(mi x-
Therefore 

(cosha - £) 1 / 2 

An coshma — Bn s i nhma = V 2 e 

V2i 

(9) 

(10) 

a = a rgs inh V(D/R)2 - 1 

• N o m e n c l a t u r e . 

a = cons t an t value of i) (defining sphe re sur

face) 

An, An, Bn, B„, C,„ En = coefficients in inf i 

ni te series 

D = d i s tance from sphere cen te r to in ter 

face 

F„ = funct ion of in and a (cf. equa t ion (8)) 

g = met r ic coefficient 

h = hea t t ransfer coefficient 

k = t h e rma l conduc t iv i ty 

K = function of n and N (cf. equa t ions (A.I) 

and (A.2)) 

L = function of N a n d a (cf. equa t ion 

(A. l ) ) 

m = n + lk 
n, p = non-negat ive integers 

N = Bio t modu lus 

Pn = Legendre polynomial of order n 

q = d i s tance from i) = ±°° to i) = 0 (in bi

spher ical sys tem) 

r = coord ina te defined by equa t ion (22) 

R = sphe re rad ius 

T = t h e r m o d y n a m i c t e m p e r a t u r e 

cii = def ined by equa t ion (A.2) 

i), 8, \p = b ispher ica l coord ina tes 

£ = cos0 

p = separa t ion p a r a m e t e r 

</) = nond imens iona l t e m p e r a t u r e excess 

S u b s c r i p t s 

a = sphe re surface t e m p e r a t u r e 

b = t e m p e r a t u r e far from interface 

(', j , n, p = indices 
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An = B„ tanhma + \/~2 
coshmo 

(n = 0, 1, 2 . . . co ) (11) 

To find the additional relationship required to obtain the remaining 
sequence of coefficients Bn, we apply the free surface heat transfer 
condition (5c) i.e., 

E [NAn + (n + i ) (1 - £)B„] Pn(0 = 0 (12) 

where N = q h/k is a nondimensional number relating the heat 
transfer coefficients h and k of the two phases and the geometry of 
the problem, (q — R sinha = VD2 — R2). In this sense N is a Biot 
modulus characterising the present problem. Using now a recurrence 
relation for £P„(£), 

J„ K+HHp -(« 

= E B , 
n = 0 Pr1'-+i(£) + - P n - i ( £ ) J (13) 

matching coefficients and substituting equation (11) leads to 

2V2Ne~a/2 

Bx = — + B0( l + 2W tanh a/2) (n = 0) 
cosh a/2 

B,i-{ 
2V2Ne 

(n + 1) coshma 
• + Bn 

~(2n + 1) + 2N tanhma" 

n+l J 

B„_i ( r a > l ) (14) 
n + l 

In order to effect a complete solution of the boundary value problem 
one coefficient of the series Bn (say Bo) is required. Once this is 
available, the others can be found via equation (14). Integration of 
condition (12) over the interface surface provides the additional 
relation needed to close the solution. This essentially uses the source 
strength to bound the sum of the coefficients. 
Hence 

' 00 } Bn 

5.0-0 

2.0 

1.0 

0.5 

0.2 

0,1 

.05 

.02 

.01 

COEFFICIENTS IN INFINITE SERIES 

o N=I00 , D/R = 1.03 

D N=0.1 , D/R =1.03 

O N=0.1 , D/R=6.13 

A N = 1 , D/R = 6.13 

10 20 30 40 50 n 

Fig. 2 Values of B„ versus n for different sets of parameters D/R and N 

E (n+l)Bn f'd-flWPnttJdf 
n=0 \ 2/ J-\ 

„=o J-1 (1 -

Pni&dl; 
1/2 

after integration yields 

E _ _h = _ 2 i V E — 
n=o (m + l)(m - 1) „=o m 

(15) 

(16) 

Using equation (11) to eliminate A„ 

E B „ | 
n=0 

2N tanhma 

(n +-) (n ) n + -
A 2/ V 2/ 2 

e~(n+l/2)o 
= - 2V2N E (I?) 

'i=0 / 1 K) coshma 

and when substituting the recurrence relation (14) an equation for 
Bo (cf. Appendix) is obtained. Solution of this equation yields the 
values of all B„ when put back into the recurrence relation (14), 
completing the solution of the boundary value problem (5). 

The solution of Laplace's equation described by equations (6), (11), 
and (17), while exact and complete, is extremely cumbersome to apply, 
due to the lengthy algebraic expressions (cf. Appendix). A numerical 
method, equivalent to the foregoing integral condition (15) is therefore 
used. This is a form of collocation whereby equation (5c) is applied 
to a large number of different points on the free surface-designated 
by different values of J. At each of these points, <j> is approximated by 
a truncated series of the p leading terms, written as a function of B„ 
only. Thus, a set of p equations with p unknowns (B0, B\, B% • • • , 
B p _ 1) is obtained. This is now solved by simple matrix inversion. The 
actual equations are derived by writing (5c) as 

°° l\^2Ne~ma 1 
E : + Bn[Ntanhma + m (1 - £)] Pn(£) = 0 (18) 

n=o 1 coshma J 

Taking the first p terms, of each of p values of £ we obtain the set of 
equations 

E B„ tanhma -\ — 
n=o L N J n=0 coshma 

(19) 

from which the coefficients B„ (n = 0 , 1 , . . . , p — 1) are obtained by 
matrix inversion as mentioned before. The accuracy can then be 
checked by comparing with equation (14). Similar point-matching 
techniques have been used for potential boundary value problems, 
including plane heat transfer [5]. 

3 R e s u l t s 
The nondimensional temperature distribution in the solid medium 

is, from (6) and (11) 

<Hv, i) = (coshjj — £)1/2 E Pn(i) B„(sinhmi7 + tanhma coshm?;) 
n=0 L 

_ coshmnl 
+ V2e~ma -\ ( 0 < | i ? | < a ) (20) 

coshma J 

where B„ is found by either equation (17) and (14), or (19). As men
tioned in the previous section, equation (19) was used to obtain nu
merical values of Bn. Results for some typical cases appear in Fig. 2 
and Table 1. The calculations were performed for a wide range of the 
nondimensional geometrical parameter D/R as well as for various Biot 
numbers, N. The variation in sphere radius and depth are achieved 
by transformation to the corresponding values of q and a, via the 
relations 

VD2 — R2; a = arg sinh V(f)*- (21) 
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n 

0 

1 

2 

3 

4 

5 

10 

15 

20 

25 

30 

4 0 

50 

59 

Table 1 

D/R = 1.03, 
N - 0 .1 

-5 .048979 

-0.827298 

-0.655416 

-0.523073 

-0.421293 

-0.342725 

-0.140739 

-0.069017 

-0.037688 

-0.021943 

-0.013232 

-0.004819 

-0.001297 

-0.000019 

Numerical values of the coefficients E 

D/R - 6 .13 , 
N - 0 .1 

-0.067387 

-0.035907 

-0.023598 

-0.016965 

-0.012838 

-0.010051 

-0.003889 

-0.001894 

-0.001034 

-0.000602 

-0.000363 

-0.000132 

-0.000036 

-0.000000 

D/R - 1.54, 
N = 1 

-0.945981 

-0.S98927 

-0.111833 

-0.048041 

-0.022885 

-0.011773 

-0.000833 

-0,000107 

-0.000019 

-0.000004 

-0.000001 

-0 .0 

- 0 . 0 

- 0 . 0 

D/R - 1 .13, 
N = 100 

-4.289392 

-0.830566 

-0.256741 

-0.089522 

-0.032417 

-0.011897 

-0.000082 

-0.000001 

- 0 . 0 

- 0 . 0 

-0 .0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

„ 
D/R = 6 .13 , 

N - 10* 

-0.2529187 

-0.0015776 

-0.0000107 

-0.0000001 

- 0 . 0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

- 0 . 0 

Comparison of the cases shown in Fig. 2 for a given geometrical 
configuration {D/R = const.) shows that Bo increases, but the rate of 
decrease of Bn with n grows too so that the contributions from sub
sequent terms become less important. Increasing D/R for given N 
causes a general decrease in the values of the coefficients. Thus, for 
large values of D/R, a very small number of terms is required. This 
result is to be expected since D/R —>• co is equivalent to either a sphere 
in an infinite solid medium (D -»• <»), or a point source at a finite 
distance from a wall (R ->• 0). 

Having obtained the numerical values of B„ as a function of a and 
N (or D, R, h, and k) one can now calculate the actual temperature 
distributions from equation (20). Fig. 3 shows the variation of the 
surface excess temperature 0(0, £) as a function of distance (r/R) from 
the point directly above the sphere center (0 = 7r) for various values 
of N. These results are for a sphere situated very close to the surface 
(the uppermost point of the sphere is only 3 percent of the sphere 
radius beneath the surface). This configuration is in the range in which 
the classical method of reflections is inaccurate. The effect of in
creasing N is to decrease the maximum temperature differences on 
the surface. This is an expected result, as large N is equivalent to h 
> k i.e., conduction is the rate-controlling process. 

Next, the influence of sphere depth is examined. Fig. 4 describes 

5 10 r ' R 

Fig. 3 Nondimensional temperature excess <j> on the flat surface versus 
normalized distance from the point directly above the sphere center, for dif
ferent Biot numbers N, D/R =s 1.03 

Fig. 4 Maximum nondimensional temperature excess on the flat interface 
versus nondimensional distance of the highest point on the sphere from the 
interface 

the maximum surface temperature excess, for various N, versus (D 
- R)/R. All the curves tend to the value 0 = 1 for (D - R)/R — 0 
which describes a sphere touching the surface. This limiting case 
cannot be calculated by the present method as the coordinate system 
does not permit finite sized spheres i) = -const, osculating the flat 
surface ij = 0. However, the limit is self-evident from the requirement 
of T = Ta(<f> = 1) on the sphere surface.2 

The surface temperature distribution for various D/R and JV = 1 
is shown in Fig. 5. The abscissa is the bispherical coordinate 6 which 
allows a more compact display. This can be transformed to the cy
lindrical coordinate r on the surface, measured from the point directly 
above the sphere center (8 = 180 deg) by means of 

q sinfl 

cosily — cosfl 

The advantage of this description is seen when one recalls that rj 
6 = 0 is equivalent to r = °°. 

(22) 

2 Such problems can be solved with the aid of the tangent-sphere coordinate 
system [6]. 

Fig. 5 Nondimensional temperature excess on the flat surface versus 8 for 
various depth ratios D/R, N = 1 
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Fig. 6 Nondimensional temperature excess distribution in the solid medium 
for D/R = 1.03, N = 1 

Fig. 7 Nondimensional temperature excess distribution in the solid medium 
for D/R = 2.35, N = 0.1 

The analysis of the previous section enables us also to calculate the 
temperature distribution throughout the solid external to the sphere. 
The results of sample calculations of this sort appear in Figs. 6 and 
7. A useful check on the accuracy of the numerical scheme (i.e., the 
number of terms required for any required accuracy) is obtained here, 
by recovery of the temperature on the sphere surface. The number 
of terms taken in the series (20) was deemed sufficient when all points 
calculated on the sphere surface had <j> = 1.000000 ± 0.000001. Here 
again the larger D/R, the less terms were required. For the most 
sensitive case chosen (D/R r^ 1.03, N = 0.1) less than 60 terms were 
required. Larger values oiD/R and/or N required less terms to fulfill 
the foregoing criterion. 

Comparison of Figs. 6 and 7 show that for smaller N there is a 
smaller temperature spread in the solid. This results from the higher 
thermal conductivity. The temperatures are again given in bispherical 
coordinates, which can easily be transformed to the Cartesian system, 
if temperatures at a certain depth are required. 

4 C o n c l u d i n g R e m a r k s 
The parametric study in Section 3 of the effects of physical di

mensions and location as well as heat transfer coefficients shows that 
even moderate temperature differences at the sphere are noticeable 
at large relative distance. The sharp changes in surface temperature 
when moving away from the source position should be of aid in at
tempts to locate buried heat sources (sinks). In addition to the ap
plications described in the Introduction, interesting biomedical uses 
suggest themselves including tumor thermography. 

The solution given in the present paper is just one of several possible 
heat transfer problems that can be solved by this method. The re
quirement of convection causes a mixed boundary value problem. 
Simpler Dirichlet or Von-Neumann problems are easily derived for 
isothermal free surface or cases where the heat transfer is pre
scribed. 
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APPENDIX 

A p p l i c a t i o n of the Tota l H e a t F l u x B o u n d a r y 
Condi t ion 

Equation (17) is of the form 

Yi BnK„ — L 
re=0 

(A.l) 

where Kn is a function of n, N, and L is a function of N and a only. 
Substituting now the recurrence relations (14) into the left-hand side 
of equation (A.l) one can obtain a single equation in one unknown Bo. 
Once So is established as a function of N and a, one can find Bj, B% 
etc. As mentioned in the Analysis Section however the recurrence 
relations give rise to very lengthy and unwieldy expressions. The first 
five terms of the reduction of B„ to functions of Bo, a and n only are 
shown here. 
Define 

21 + 1+2N tanh H)° 
i+ 1 

Kj-
2V2Ne~(J+1/2)a 

(j + 1) cosh h + -j a 

(A.2) 

we obtain 

S i = K0 + aoB0 

B 2 = Ki + ctiKo + (aiofo - -) So 
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fl;i = K2 + a'lKi + I ff2«l ) Ko + I ff2«l«0 «2 CtO B o + ( tt4a3«2«l «2«1 _ " «4«1 ) Ko + I «4a3«2«l«0 _ ~ «2«1«0 

B4 = K ; i + a.sK2 + ( (130:2 ) ^ 1 + ( a3«2«l «1 «3 ) KQ «4« 1«0 «4«3«2 "I «2 + ~ «4 — «4«3«0 — 7 "0 I Bo (A.3) 
\ 4 / \ 4 3 / 4 2 10 8 5 J 

r 3 2 1 r, 
+ «3«2«i«o - - «iao - - «3«i Bo 

n - f j f i / 4 \ T ^ I / 4 3 \ „ This sequence of B„ has now to be substituted into equation (17) to 
ha - K 4 + ff4A4 + ( ff4«3--| K2+ [04013012 «2 - ~ «4 ) ft] , . , .- r n 

\ 5/ \ 5 4 / obtain the equation tor Bo. 
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Spectral Absorption of Water Vapor 
and Carbon Dioxide Mixtures in the 
2.7 Micron Band1 

An investigation of the spectral absorption characteristics of water vapor and carbon 
dioxide mixtures in the 2.7 micron band is described. The absorption of black body radia
tion by gas mixtures in the central region of a high temperature furnace was measured. 
The optical path length of 30 cm was bounded by NaCl windows mounted in water-cooled 
holders. The temperature was essentially uniform in the central one-third of the test cell, 
and decreased to between 400-800 K at the ends. Representative spectral transmissivity 
distributions obtained for central temperatures ranging from 1000 to 2200 K and pres
sures from 0.25 to 3 atm for four different mixture ratios of water vapor and carbon diox
ide are presented. Results showed the interaction effect on spectral transmissivity to be 
greatest at the band center where the maximum change from around 0.40 to 0.48 was ob
served for approximately equimolar mixtures at a total pressure of 0.5 atm. Since this oc
curs over a limited wave number range, spectral transmissivities of such mixtures can be 
acceptably approximated by ignoring the interaction. Spectral distributions predicted 
from published data for spectral H2O and CO2 absorption coefficients and line half-width 
to spacing ratios are in good agreement with measured distributions. 

Introduction 
The absorption and emission of infrared radiation by gases is in

volved in many applications. The familiar products of combustion— 
water vapor, carbon dioxide, and carbon monoxide—are particularly 
important due to their comparatively high absorptivities and emis
sivities in the near infrared region. The fractions of water vapor and 
carbon dioxide in combustion gases are usually large. They are also 
the most effective in the emission and absorption of infrared radiation. 
Because of this and of the fact that there are overlapping absorption 
bands of water vapor and carbon dioxide in the short wavelength re
gion, mixtures of water vapor and carbon dioxide are of special interest 
and were chosen as the subject of the present investigation. 

Charts and methods for calculating the total emission from, or 
absorption by, gas mixtures of water vapor and carbon dioxide were 
developed by Hottel and co-workers [l].2 Use of these results, however, 
involves the gray body assumption. Although the need for spectral 
characteristics of these mixtures has been recognized, investigations 

1 The support of the NASA Marshall Space Flight Center under contract 
NAS 8-11468 is gratefully acknowledged. 

2 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
April 26,1976. 

have been very limited. Ferriso and Ludwig [2] measured spectral 
emissivities in the 2.7 micron (lira) band for water vapor and carbon 
dioxide mixtures at atmospheric pressure for temperatures between 
1000 and 2200 K. They used a supersonic burner which provided three 
different mixture ratios of water vapor to carbon dioxide: 1:1, 3:1, and 
6:1 on a mole basis. Their measurements were limited to low optical 
densities, the maximum being 3.12 atm cm. Penner and Varanasi [3] 
calculated the overlapping effect of the 2.7 and 15 micron absorption 
bands in water vapor and carbon dioxide mixtures by assuming a 
"just-overlapping line" wide band model. Their results yielded total 
emissivities for temperatures up to 1200 K. Subsequent studies of this 
problem include the work of: (1) Hines and Edwards [4] who devel
oped an empirical wide band method which yielded band absorp-
tances in agreement with homogeneous mixtures measurements in 
the 500-800 K range; and (2) Lin and Grief [5] who proposed a narrow 
band summation method. 

The objective of the present study was to investigate the spectral 
absorption of water vapor and carbon dioxide mixtures at tempera
tures above 1000 K and at high optical densities. Experimental 
measurements were made with precisely controlled and easily varied 
mixtures contained in an electrically heated furnace. Although it 
would be desirable to determine absorption of emission under both 
isothermal and nonisothermal conditions, suitable window materials 
for operation much above 1200 K are not available. In many appli
cations, however, the gas mass involved is not isothermal. Measure-
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ments were therefore made of the spectral absorption by 30-cm long 
test mixtures, the temperatures of which were essentially uniform in 
the central one-third and decreased toward each end. Central tem
peratures were varied from 1000 to 2200 K; corresponding end tem
peratures varied from 400 to 800 K. Pressures ranged from 0.25 to 3 
atm. To provide a background for presenting and discussing the ex
perimental results, a brief review of spectral radiation absorption by 
gas mixtures is first given in the following section. 

H2O-CO2 Mixture Infrared Spectral Transmission 
Characteristics 

In the infrared region vibrational-rotational bands are observed 
at 667, 2349, 3715, and 4978 cm"1 for C02 , and at 1595, 3755, 5331, 
7250, and 8807 cm - 1 for H 2 0 [6]. In mixtures the vibrational-rota
tional bands at 3715 cm"1 of CO2 and 3755 cm - 1 of H 2 0 water vapor 
overlap; both are called the 2.7 micron bands. 

Negligible Interaction Between Components. The first ap
proximation in the description of absorption in a two-component gas 
mixture is to assume that the optical path consists of two similar 
compartments separated by a thin partition which is optically 
transparent, and that the two different gases fill these compartments. 
The intensity of the radiation after passing through the first com
partment is 

/ j = loe-kl(w)PlL (1) 

This is the incident intensity for the second compartment, so that the 
intensity of the radiation after passing through the second compart
ment is 

/2 = -fie~M l° ) p 2 L 

I'l = / 0 e"* I ' ' " ' P l i 6 - ' i 2 ' " ' ' P 2 t 

(2) 

(3) 

where the subscripts 1 and 2 refer to the first and the second com
partments, respectively. Therefore, the spectral transmissivity along 
a path through these two separated gases is given by 

Tl2(w) = — = e~~*i<"')Piz'e~*2(!")P2/. (4) 
h 

= T1(w)T2(w) 

The spectral absorptivity is given by 

Al2{w) = 1 - T12(w) = 1 - Ti(w)Tz(w) 

^l-a-A^wWl-Aiiw)) 

= A^w) + A2(w) - Al(w)A2(w) (5) 

Comparison of equations (4) and (5) suggests that the spectral 
transmissivity will result in a simpler expression for describing the 
macroscopic radiation characteristics of mixtures. It is for this reason 
that attention is focused on transmissivity rather than absorptivi
ty. 

Next consider the two gases are contained in just one of these two 

compartments at a total pressure of p = p i + p 2 . Assuming no inter
action between the two gases, the ratio of the intensity leaving to the 
incident intensity is 

_ = e - ( * i ( « i ) p i L + * 2 ( w ) p j t ) 

h 
(6) 

which is the same as when the gases were in series. Therefore 

Tm(w)=y=Tl(w)T2{w) (7) 
JO 

The validity of this result for low pressures has been demonstrated 
experimentally [6, p 124]. 

Instead of partial pressures pt and p2 , the total pressure p and mole 
fractions £ and ij are usually given. Substituting p 1 = £p and p 2 = i\p 
yields3 

7V7V (8) 

where T\ and T2 are the spectral transmissivities of masses of pure 
gases 1 and 2 whose pressures, temperatures and optical lengths are 
the same as those of the gas mixture. Equation (8) is frequently re
ferred to as the multiplication property. 

Interaction Between Gases. The actual transmissivity of a 
mixture of two different gases will differ from that predicted by 
equation (8) due to the interaction between them. Evaluation of this 
effect requires determining the influence of each gas on the other in 
increasing the widths of all the lines in a band. This is a difficult and 
complex problem (e.g., see references [6, 7], for which no rigorous 
solution has been obtained. Semiempirical approaches have however 
been developed. For example, by assuming a statistical band model 
to be applicable, mean spectral values of the absorption coefficient 
k (w) and the ratio of the mean line half-width to the line spacing {y/d) 
have been determined from spectral data in reference [8]. The actual 
equation employed is 

In T(w) 
kpL 

1 + 
kpL "I 

4(7/d)J 
1/2 

0) 

Simplified theoretical relations were used to evaluate the effective 
line half-width, including self and foreign gas broadening effects. 
Values thus determined for k and d versus wave number and tem
perature are tabulated for H 2 0, C02 and CO [8]. Predictions of iso
thermal and segmented optical path spectral characteristics from 
these values have been found to be within ±20 percent of measured 
values. 

Curtis-Godson Approximation Calculations. To apply the 
tabulated spectral data of reference [8] to the strongly nonisothermal 
mixtures investigated, the test path was divided into 9-15 subpaths 
(smaller subpaths were used for the higher central temperatures). 

3 Hereafter for simplicity, the independent variable iv will not always be in
dicated but should be understood. 

^Nomenclature-
A(w) = average spectral absorptivity at wave 

number w 
d ~ spectral line spacing 
/ = intensity of radiation 
lo = intensity of the incident radiation 
k(w) = average spectral absorption coeffi

cient, c m - 1 a tm" 1 

L = distance or test cell length, cm 
p ~ gas pressure, atm 
w = wave number, c m - 1 

T(w) = average spectral transmissivity at 
wave number w 

Ti(w) = average spectral transmissivity of the 
ith type gas at wave number w 

Ti2(w) = average spectral transmissivity of 
two nonmixed gases at wave number w 

Tm (w) = average spectral transmissivity of 
a gas mixture at wave number w 

Tm'(w) = average spectral transmissivity of 
a gas mixture with no interaction between 
components 

Ti(w) = true spectral transmissivity at wave 
number w 

7 = spectral line mean half-width 

?) = mole fraction of carbon dioxide in a 
mixture 

M = micro 
£ = mole fraction of water vapor in a mix

ture 
8 = temperature, degrees Kelvin 

Subscripts 

1 = water vapor 
2 = carbon dioxide 
m = mixture of water vapor and carbon 

dioxide 
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Fig. 1 High temperature infrared absorption system 

Each of these was assumed to be at a uniform average temperature 
which was determined from the distributions in Fig. 2. The deter
mination of the effective absorptivity or transmissivity of such a 
nonhomogeneous path by allowing two parameters such as the ab
sorption coefficient and line half-width to vary along the path is 
known as the Curtis-Godson Approximation. The specific procedure 
was to calculate (1) the product of the mean absorption coefficient 
and optical density and (2) the quotient of this quantity and (y/d) 
according to4 

4 Spectral absorption coefficients are tabulated for standard temperature and 
pressure conditions; thus, ki = fcsTp(p/Po)(0o/") 

14 2 4 6 8 10 12 

Distance from Window, cm 

Fig. 2 Measured temperature distributions along absorption path 

kpLKyld) AL/(y/d) 1 
(11) 

(12) 

Values of ksrp and 1/d are taken from the tables in reference [8] and 
local values of 7 are computed from the relations recommended 
therein. 

Spectral transmissivities are then calculated from equation (9) for 
both H2O and CO2. Substitution of these results into equation (8) then 
yielded spectral transmissivities for a mixture. Since the effect of 
collision broadening was included in the calculations of the line mean 
half-width, these results could be expected to account for the inter
action between the CO2 and H2O. 

Experimental Apparatus and Measurements 
The experimental program was carried out with an infrared spectral 

absorption system consting basically of a light source, a graphite re
sistance high temperature furnace with an inner ceramic tube in which 
the test gas was contained and a monochromator. The design of the 
equipment and spectral absorption measurements of CO from 300 
to a central temperature of 1800 K are described in reference [9]. By 
removing the inner ceramic tube, spectral data for CO were obtained 
up to central temperatures of 2700 K [10]. The system as used for the 
current study is shown in Pig. 1 and included auxiliary apparatus for 
supplying filtered carbon dioxide and water vapor. A complete de
scription of the equipment and the experimental procedure followed 
is given in reference [11]. 

Spectral absorptivity distributions over the 2.7 micron band were 
measured under all combinations of the following variables, except 
as noted: 

Central temperature: 950,1100,1300, 1500,1750, 2000, 2100, and 
2200 K 

Pressure: 0.25, 0.50, 1, 2, and 3 atm 
Mole fraction of water vapor to carbon dioxide: 0:1,0.7:1,1.9:1,4.2:1, 

11.5:1, and 1:0 
Path length: 30 cm 
Exceptions: at 950 K, 2 and 3 atm; 1100 K, 3 atm; 2100 K, 0.25, and 

0.5 atm; at 2200 K data at only 1 atm 
For each central (hot zone) temperature studied, up to 2000 K, the 

axial temperature distributions were measured with a shielded plat-
inum-platinum/rhodium thermocouple probe. These are shown in 
Fig. 2. When taking data the test cell temperature was monitored with 
an optical pyrometer sighted*n the center of the alumina tube con
taining the test mixture. For central temperatures above 2000 K, 
distributions were approximated from the pyrometer readings and 
window temperature measurements. 

Journal of Heat Transfer FEBRUARY 1977 / 55 

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



l . U 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 -

0.1 

Path Length 

30 cm 

Central Temperature 
2100 K 

H,0 

i i i -i l I L _ L 
2800 3200 3600 4000 4400 

Wave Number w, cm"1 

Fig. 3 Spectral fransmisslvlfy distributions of C 0 2 and HaO for central 
temperatures of 2100 K 

2500 3000 3500 H000 

-1 

4500 5000 

Wave Number, cm 

Fig. 5 Mole fraction dependence of spectral transmissivity distributions of 
C 0 2 and H 2 0 mixtures at 1100 K and 1 atm. 
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Fig, 4 Effect of temperature on the spectral transmissivity distribution 
of a 0.7:1 mole fraction mixture of H 2 0 and C 0 2 at 1 atm 

Representative results of the transmissivity distributions of pure 
H2O and CO2 are shown in Fig. 3.5 These curves are for a central 
temperature of 2100 K and illustrate the significant effect of pressure. 
That the temperature is relatively unimportant is illustrated in Fig. 
4 in which transmissivity distributions of a 0.7:1.0 mole mixture for 
central temperatures varying from 1100 to 2200 K are plotted. The 
effect of increasing H2O content in a mixture at 1100 K and 1 atm is 
shown in Fig. 5. Here local values of T(w) change by as much as 50 
percent in the region between the band center and the wings. 

A limited number of measured transmissivity distributions 
throughout the range of test conditions were selected to illustrate the 
effect of the interaction between H2O and C02 . These are shown in 
Figs. 6-15. In each, a curve determined from the multiplication 
property (equation (8)) has been plotted. The values for the individual 
gas transmissivities used in equation (8) were the appropriate values 
measured with the same temperature distribution with pure gas 
present. The differences between these curves and the actual mixture 
measurements are a measure of the interaction effect. Also included 
in Figs. 6-15 are curves predicted from the tabulated data in reference 
[8] as described in the previous section. 

Discussion 
Figs. 6-9 show transmissivity distributions for mixtures varying 

from a high mole fraction of H 2 0 to a high mole fraction of CO2. The 
test cell central temperature was 950 K and the pressure was 1 atm. 
The most significant changes to be noted are directly relatable to the 
relative proportions of the two gases. That is, spectral transmissivities 
are lower at the higher wave numbers with increasing H2O content. 

Comparison of the mixture measurements with those calculated 

5 Additional data for H20 is presented in reference [12] and for H2O and C02 
in reference [13]. 
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to be ±20 percent. The agreement between the two results in all cases 
compared is well within this value except around w = 3800 cm - 1 . This 
is due to the dip and sharp rise in this region being averaged out in the 
present measurements.6 Local variations around w = 3800 c m - 1 be
come more pronounced as the mole fraction of CO2 is increased. 
However, comparison of the integrated band absorption for the ex
perimental and predicted curves was within 5 percent. 

Referring to Figs. 10 and 11 which are for central temperatures of 
2000 and 2200 K at a pressure of 1.0 atm it can be seen by comparison 
with Fig. 6 (for the same mole fraction ratio but central temperature 
of 950 K) that temperature does not have a strong effect on the 
spectral transmission. In general, local values appear to decrease with 
temperature, the magnitude being on the order of 10 percent as the 
temperature is doubled. 

In contrast, pressure (or optical depth) has a very strong influence. 
This is illustrated in Figs. 12-15 in which the pressure varies from 0.25 
to 3.0 atm for a mole fraction ratio of 4.2 H2O:1.0 CO2. Note that in 
Fig. 14 for which pL = 60 atm cm the center of the band is almost 
black. In Fig. 15 pL = 90 atm cm. The significant broadening of the 
band is clearly evident. A second point of interest is that at the higher 
pressures the distributions calculated from equation (8) are very close 
to the experimental curves. 

For many practical calculations it is advantageous to know the total 
band absorptance of a gas rather than the detailed spectral variation 
of its absorptivity or transmissivity. Hence much attention has been 
devoted to developing techniques for predicting band absorptance 
of pure gases and mixtures. The situation involving two overlapping 
bands was the subject of a recent study by Felske and Tien [14]. The 
applicability of the multiplication property (equation (8)) was as

sumed and an exponential wide band model is used to establish a 
simple analytical basis for determining the total band absorptance 
of two overlapped infrared gas wide bands. The procedure was ex
tended to include nonhomogeneous conditions. Total band absorp-
tances calculated to compare with the present measurements were 
in excellent agreement with values obtained by integration of the 
spectral curves. 

Summary and Conclusions 
The spectral transmission characteristics of mixtures of H 2 0 and 

CO2 were investigated under nonisothermal conditions for optical 

— A — P r e d i c t e d Using 

Bel. 8 Data and Curtis — 

Godson Approximation 

6 The effective width of the slit through which radiation entered the mono-
chrometer was adjusted to include a wave number range between 100 and 150 
cm-1 to obtain good response in the band wings. 
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Fig. 12 Spectral transmissivity distribution of a 4.2:1.0 mole fraction mixture 
of H20 to C02 (Tc = 1500 K, P = 0.25 atm) 
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depths varying from 7.5 to 90 atm cm. Test cell central temperatures 

varied from 950 to 2200 K. Transmissivity distributions predicted 

from measurements of the individual gases indicated the interaction 

effect in the mixtures to be greatest at the band center. However, the 

magnitude of this effect was never greater than 20 percent. Since this 

occurs only over a short wave number range, it is concluded that the 

interaction effect may be neglected in practical calculations. Confi

dence in the measurements was provided by the good agreement 

found between the experimental spectral distributions and those 

predicted from available spectral data. 
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Combined Radiation—Convection 
for a Real Gas 
A study of interaction of radiative transfer with connective transfer is presented for slug 
flow of an absorbing-emitting gas in a circular tube with an isothermal black wall. The 
zone method of solution is utilized to evaluate axial gas temperature and wall heat flux 
distributions using recently developed direct exchange areas for arbitrary zone width to 
radius ratio. Gas radiative properties are evaluated from the weighted sum of gray gases 
model with weighting factors and gray gas absorption coefficients applicable for an equi-
molal mixture of carbon dioxide and water vapor. Results are presented for several values 
of the governing parameters which are the Boltzmann and Stanton numbers, inlet gas and 
tube wall temperatures, as well as tube length to diameter ratio. Effects of cooling and 
heating of the gas are examined. 

Introduction 

Increasingly higher temperatures, unit capacities, and heat loading 
requirements of engineering systems have created a need for ac
ceptable methods for prediction of temperature levels and heat 
transfer rates within these systems. Several of these systems are 
characterized by flow of a radiatively participating gas through cir
cular channels. Thus, effects of interaction of radiative transfer within 
a participating medium with conduction and convection must be in
cluded in analyses for determination of temperature levels and heat 
transfer rates for these channels. 

Several investigations as reviewed by Wassel, et al. [I]1 were based 
on solution of the governing integro-differential equations which 
describe the interaction of radiation with conduction and convection 
in circular enclosures. Band models were employed in these investi
gations to describe the frequency dependence of gas radiative prop
erties. Another formulation technique oriented toward engineering 
analysis is the zone method [2] which is based on the rationale that 
gas radiative properties may be represented by a weighted sum of a 
number of gray gases. The zone method has been successfully em
ployed to examine temperature distributions and heat transfer rates 
in furnaces and circular enclosures [3-7]. 

The purpose of this paper is to examine interaction of radiative 
transfer with convective transfer for flow of a radiatively participating 
gas in circular tube. The zone method is employed to evaluate radiant 

1 Numbers in brackets designate References at end of paper. 
Contributed by The Heat Transfer Division and presented at the National 

Heat Transfer Conference, St. Louis, Mo., August 9-U, 1976, of THE-
AMERICAN SOCIETY-OF MECHANICAL ENGINEERS. Revised manu
script received by the Heat Transfer Division October 22, 1976. Paper No. 
76-HT-58. 

exchange within the gas as well as between the gas and surrounding 
surfaces. Gas radiative properties are described by the weighted sum 
of gray gases model. Results are reported for axial gas temperature 
distribution as well as local and overall wall heat transfer rates. 

Analysis 
Description of System. The system selected for this study con

sists of a radiatively participating gas flowing through a circular tube 
of length L and diameter D. Slug flow implying uniform velocity and 
temperature profiles across the tube cross section exists throughout 
the tube. The gas enters the tube with a mass flow rate m, inlet tem
perature Te and has attained the steady-state condition. Furthermore, 
the gas is assumed'to be isobaric, uniform in composition and to ex
hibit a constant specific heat. Gas radiative properties are temperature 
and pressure-path length dependent and are described for an equi-
molal mixture of carbon dioxide and water vapor. In the absence of 
suspended particles, radiation scattering is neglected. Axial heat 
conduction within the gas is negligible and a constant convective 
coefficient exists throughout the tube. There are no heat sources 
within the gas. The tube wall is taken to be black and maintained at 
a uniform temperature. The conditions at both tube ends are repre
sented by porous black surfaces with inlet surface at the inlet gas 
temperature and exit surface at either the outlet gas temperature or 
the tube wall temperature. 

Formulation of Equations. The zone method consists of sub
dividing the enclosure into a number of surface and volume zones 
small enough for each zone to be assumed to be isothermal and to have 
uniform properties. A weighted sum of gray gases representation for 
gas emissivity and absorptivity is utilized where the temperature 
dependence of gas radiative properties is carried by weighting factors 
with absorption coefficients being constant. Direct exchange areas 
[2] which describe the net radiative exchange between respective zones 
then need to be calculated only once for each- gray gas absorption 
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coefficient. Since tube walls are black, total exchange areas, which 
take into account interreflections, are equal to direct exchange areas. 
Directed flux areas which account for the nongrayness of the gas are 
then evaluated utilizing total exchange areas and weighting factors. 
Evaluation of directed flux areas within the enclosure gives necessary 
information for a radiant energy balance to be drawn up for each 
zone. 

The energy balance for a volume zone is expressed as 

£ GfiiEsj + £ SjGiEs + SlG,Ee + SjJiEB - 4K,-V,-£g,,-
j ' 

+ mcpiT^t - Ta,i) - hAs(Te,i - Ts) = 0 (1) 

The first term in equation (1) represents radiant energy emitted by 
all volume zones and absorbed by V;. The next three terms refer to 
radiant energy leaving all surface zones and absorbed by V,: with tube 
wall emission included in the second term and emission of the inlet 
and outlet surfaces accounted for by the third and fourth terms, re
spectively. Directed flux areas GG and SG ate dependent on tem
peratures of emitting and absorbing zones. Volume zone emission is 
represented by the fifth term where Ki is evaluated from the gas 
property model and is dependent on gas temperature. The last two 
terms of equation (1) respectively represent decrease of sensible en
thalpy of the gas flowing through V,- and the convective transfer to 
the contiguous wall zone. The energy balance of equation (1) may be 
rewritten as 

£ G]Gi6j4 + £ SjGiOs4 + SJ3,6e
4 + SJJiO,,4 - 4#,V,-0,4 

j J 

+ BNO0,3(0;- ' .O-StBNOfl , 
At 

fl*) = 0 (2) 

In equation (2), 0,_i is replaced with 6e when the volume zone is ad
jacent to the inlet surface. 

Similarly, an energy balance on a wall surface zone can be written 
to yield the following expression for wall heat flux normalized with 
the emission of a black body at Tr and the wall zone area 

* v th £ SjSids* + ses,ee 

, St BNO 

At 
Ss

3(8i ~ Bs) (3) 

The first three terms on right-hand side of equation (3) refer to ra
diant energy leaving all other surface zones and arriving at the con
sidered wall zone. Radiant energy emitted by all volume zones and 
incident on the wall zone is accounted for by the fourth term. The fifth 
term denotes emission by the wall zone. The last term in equation (3) 
represents convective transfer from the contiguous volume zone. 
Equation (3) can be solved to evaluate wall heat flux after the tem
perature in each volume zone has been evaluated from equation (2). 
Total wall heat flux based on total wall surface area is expressed 
by 

<7< = £ Q»,i/N 
i 

Total system energy balance is written as 

(Jin = qt4Nb/D + q0 

(4) 

(5) 

where Qi„ includes the enthalpy of inlet gas (BNO Bs
 S8e/At) minus the 

heat flux to the inlet surface. qout refers to the enthalpy of gas leaving 
the enclosure (BNO ds

 30o/At) minus the heat flux to the outlet surface. 
Inlet surface heat flux is evaluated from 

•ib £ SjSeBs4 + £ GjSJj* + S„Sel (6) 

For the outlet surface, the heat flux is obtained by interchanging 
subscripts "e" and "o" in equation (6). 

Method of Solution. Equation (2) represents a set of simulta
neous nonlinear algebraic equations where the coefficients of the ra
diant energy terms are functions of the unknown gas temperature. 
An iterative technique was employed to solve this system of equations 
on a digital computer. It was found more convenient to evaluate the 
coefficients at some gas temperature distribution and hold these 
quantities constant while new solutions were obtained for the gas 
temperatures. The coefficients were then evaluated at these tem
peratures and another set of gas temperature acquired. This iterative 
procedure was repeated until the difference between successive 
temperature results was of the order of 10~4 or less and the energy 
balance equation (2) was satisfied within 10~4. Several test cases [8] 
demonstrated that the numerical results have an accuracy of better 
than 1 percent. 

Gas Radiative Properties 
Total gas radiative properties may be represented by the weighted 

sum of a number of gray gases. The relationship for gas emissivity 

% = £ a ( ,„(Tg)[l - exp (-knPge)\ 

and for gas absorptivity 

• = £ aa,n(Tg, T s)[l - exp (-knPgt)] 

(7) 

(8) 

where kn is pressure absorption coefficient for the rath gray gas 
component. Weighting factors a(]„ and a„_n may be interpreted to 
represent the fractional amount of black body energy in the spectral 
region with gas absorption coefficient kn. Each set of weighting factors 
must sum to unity and all weighting factors must be positive. Ts in 
this discussion refers to the surface temperature where surface ra
diation originates. Absorption coefficient as introduced in equation 
(1) is expressed as 

K=Eat,n(Tg)knPe (9) 

•Nomenclature-

a„ = weighting coefficient for absorptivity 
a i = weighting coefficient for emissivity 
As = tube wall zone area, wDb 
At = tube cross-sectional area, irD2/4 
A„ = polynomial coefficients for absorptivi

ty 
A, = polynomial coefficients for emissivity 
b = zone width 
BNO = Boltzmann number, mcp/aTr

3 

cP = specific heat 
D = tube diameter 
E = black body emissive power 
GG, GS = directed flux area: volume to vol

ume zones, volume to surface zones 

h = convective heat transfer coefficient 
k = pressure absorption coefficient 
K = absorption coefficient 
t = path length 
L = tube length 
m = mass flow rate 
N = number of zones 
P = combined partial pressure 
q = dimensionless heat flux 
SS, SG = directed flux area: surface to sur

face zones, surface to volume zones 
St = Stanton number, hAt/mcp 

T = temperature 
V = zone volume, wD2b/4 

x = axial distance 
a = absorptivity 
t = emissivity 
a = Stefan-Boltzmann constant 
6 = dimensionless temperature, T/Tr 

Subscripts 

e = inlet surface 
g = gas 
o = outlet surface 
r = reference 
s = tube wall 
t = total 
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Table 1 Absorption and polynomial coefficients 

n 

1 

2 

3 

1 

2 

3 

1 

2 

3 

1 

2 

3 

k ,(atm-m) 

0,58862018 

4.279450.3 

39.602037 

T , K 

560 

1250 

1960 

\,»,i 

-0.053748075 

0.30830035 

0.086454357 

-W ' 
0.067939805 

0.40307266 

0.093158368 

0.30374814 

0.39440077 

O.076598O17 

0.44128900 

0.35798003 

0.076707698 

A
E,n,2

n°' 

3.0033869 

-0.67169883 

0.50666873 

A «104 
a,n,2 

2.3562649 

-1.5344167 

0.44580593 

1.6095161 

-1.2465587 

0.57807828 

1.1186038 

-0.80310778 

0.56135450 

A ,xl07 
£,n,3 

-0.57940111 

0.019966627 

-0.17770200 

A_ xlO7 
a ,n,3 

-0.63885463 

0.24579529 

-0.16226524 

-0.43591611 

0.14078103 

-0.19437219 

-0.30625509 

0.006458564 

-0.18729309 

Ap .*10 U 

e,n,4 

0.31425209 

0.025611416 

0.13827699 

A * 1 0 U 

a ,n,4 

0.45860014 

-0.14744737 

0.12877854 

0.27053110 

-0.051469552 

0.15104593 

0.15674332 

0,060928189 

0.14358272 

A term with one pressure absorption coefficient equal to zero is uti
lized to represent windows in the spectrum between bands. The 
temperature dependence of the weighting factors may be described 
by polynomials of the form 

and 

fl{,nUg) — Z-, A.ltlii I g 

aa,n(Tg,Ts) = ZAa,n,i(Ts)Te
i~ 

(10) 

(11) 

where haAj are a function of Ts. Values for kn, At,n>i, and A„ A ; were 
evaluated for an equimolal mixture of carbon dioxide and water vapor 
where pg = 0.2206 atm and are given in Table 1 [8]. These coefficients 
yield total gas emissivity and absorptivity within approximately 1 
percent of those given in [2] over a temperature range of 560-1960 K 
and a pressure-path length range of 0.024-3.0 atm-m. Coefficients 
recommended by other investigators [3, 9] were found not to yield as 
accurate results. Interpolation procedures were utilized to obtain 
values for A„ | IV when irradiation temperatures did not correspond 
to those given in Table 1, 

Direct Exchange Areas 
Fundamental to the zone method of solution is evaluation of direct 

exchange areas which pertain to radiant interchange between two 
zones. Direct exchange areas were developed by Erkku [10] for a cir
cular tube with the restriction that for zones on the cylinder axis, the 
zone width is equal to the radius of the tube. With this restriction, the 
assumption that each zone is isothermal and homogeneous may not 
be applicable in a wide variety of geometric configurations. Therefore, 
Nakra, et al. [11] developed direct exchange area expressions for zones 
on the cylinder axis with arbitrary zone width to radius ratio. In this 
study, the zone width to radius ratio was taken to be 0.25 so that direct 
exchange areas evaluated in [11] could be used for each kn given in 
Table 1. Directed flux areas [2, 8] were evaluated from weighting 
factors and direct exchange areas. 

Results and Discussion 
System Parameters. Axial gas temperature distribution for 

specified tube geometry and gas radiative properties is expressed in 
terms of the Boltzmann and Stanton numbers, inlet gas and tube wall 
temperatures, length to diameter ratio as well as outlet surface tem
perature. The pressure path length range for which gas properties 
were developed yields path lengths ranging from 0.11 to 13.8 m. If the 
tube diameter is selected as the characteristic length, then it must lie 

within this range and was selected for this study to be 0.6 m. Dimen-
sionless inlet gas and tube wall temperatures for these gas properties 
are limited to values from 1.0 to 3.5 for a reference temperature of 560 
K. The Stanton number range was selected from 0 to 0.01 where the 
lower limit corresponds to pure radiation and the upper limit is typical 
for fully developed turbulent flow [12]. Inclusion of radiation with 
convection alters St evaluated for pure convection. As an approximate 
means to include effects of radiation in this study, St as based on heat 
transfer correlations [12] should be increased by about 10 percent [13]. 
Length to diameter ratios were selected at values of 0.625,1.25, and 
2.5 to enable examination of effects of end surfaces on gas temperature 
and wall heat flux distributions. For these ratios, entrance effects may 
exist and the axial variation of St may be important. However, even 
though these effects may be readily incorporated in the analysis, this 
was not included in the present study in order to maintain a tractable 
number of variables. As will be demonstrated, the influence of St is 
not significant and, thus, radiation and entrance length effects on St 
will be minimal. Except where noted, the outlet surface temperature 
is equal to the outlet gas temperature. 

Gas Temperature and Wall Heat Flux. Dimensionless gas 
temperature distributions as a function of dimensionless axial dis
tance are presented in Fig. 1. Results for cooling and heating gas sit
uations where inlet gas temperature is, respectively, greater than or 
less than tube wall temperature are illustrated. Results are displayed 
for pure convection (PC), pure radiation (PR) as well as combined 
radiation and convection (RC). Similar trends are observed along the 
axial distance for all cases with only outlet gas temperature dependent 
on tube length as is discussed later. 

Consider first cases where the gas is cooled when 8e > ds. As ex
pected, gas temperatures decrease monotonically with axial distance 
for all values of the parameters shown in Fig. 1. PC results, which are 
dependent only on St, yield temperature profiles with a minimum 
gradient and display the greatest sensitivity to St. Inclusion of radi
ative transfer, as reflected by BNO, yields lower gas temperatures then 
for PC. For BNO = 27.9 m2, gas temperatures differ considerably from 
those for PC implying that the gas enthalpy rate (rhcpTg) must be 
significantly greater than wall emission (oTs

4) in order to neglect 
radiation effects. As BNO decreases, gas temperatures decrease with 
minimum temperatures occuring for a stagnant gas where BNO = 0. 
Furthermore, for a specified BNO, gas temperatures decrease as St 
increases with St influence decreasing as BNO decreases. Stagnant 
gas results are independent of St as observed from equation (2). 

RC results for St < 0.001 nearly coincide with PR results for the 
corresponding BNO and demonstrate that convective transfer is 
negligible when both transport modes are combined. A similar ob
servation was reported by Perlmutter and Siegel [14]. Furthermore, 
for values of BNO < 27.9 m2, PR results predict results for RC over 
the considered St range within 5 percent with the accuracy improving 
as BNO decreases. 

Consider now the cases where the gas in heated with 8S > 6e. Similar 
trends are observed for these cases as for cooling gas cases except that 
gas temperatures increase montonically with axial distance. PC and 
stagnant gas results yield lower and upper limits, respectively, for gas 
temperature distributions. Gas temperatures for RC results with BNO 
= 9.29 m2 nearly coincide with PC results. Furthermore, results for 
BNO = 0.929 m2 differ considerably from those for the stagnant gas. 
These observations are contrary to those for cooling gas cases and il
lustrate the nonlinear behavior of results when radiative transfer is 
considered. RC results nearly coincide with PR results for ST < 0.001 
and are predicted within 10 percent by the latter results for the con
sidered St range when BNO < 9.29 m2. For a stagnant gas, gas tem
peratures are closer to the wall temperature than for cooling gas even 
though the overall difference between inlet gas and wall temperatures 
is the same. 

Different inlet temperatures yield similar trends as those cited with 
increasing gas temperature levels for the cooling and heating gas cases 
as inlet temperature is increased. The change of outlet gas tempera
ture defined as (Q„ — ffe) /(0S — 6e) is independent of inlet temperature 
for PC results but increases as inlet temperature increases for RC 
results. Effects of BNO and St increase with increasing inlet tern-
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Fig. 1 Gas temperature distribution 

peratures for cooling gas cases whereas opposite trends are observed 
for heating gas cases. 

In the previous discussion, the outlet surface temperature was taken 
equal to the outlet gas temperature. In Figs. 1(a) and 1(c), results for 
BNO = 0.929 and 9.29 m2 are also presented for gas temperature 
profiles when the outlet surface temperature is maintained at the tube 
wall temperature, that is 80 = ds. This new boundary condition for 
cooling gas case lowers the gas temperature in the volume zones near 
the outlet surface and raises the corresponding volume temperatures 
for the heating gas case. 

Dimensionless wall heat flux results required to maintain the wall 
temperature are illustrated in Fig. 2 as a function of dimensionless 
axial distance. Gas cooling and heating cases correspond to positive 
and negative wall heat flux values, respectively. 

Cooling gas results are examined first. Wall heat flux distribution 
exhibits a nonuniform behavior with respect to axial distance. Values 
of wall heat flux, for the case of PR and RC, are maximum at the wall 
zone near the inlet surface where the temperature difference for wall 
and gas is the largest and also the influence of the inlet surface is 
greatest. The wall heat flux declines along the axial distance as the 
gas temperature decreases and then may increase for gas zones near 
the outlet surface. These higher heat flux results near the outlet are 
attributed to the contribution of the outlet surface which exhibits 
higher temperatures as BNO increases. Heat flux distribution for 
stagnant gas yields a lower limit. Wall heat flux results for PC are not 
displayed since they are of small magnitude for the considered range 
of parameters. Within the considered St range results for RC are 
predicted within 2 percent by those for PR for BNO < 9.29 m2. 

For heating gas cases, heat flux results exhibit a decrease (become 
less negative) with axial distance for wall zones near the inlet and then 
may increase (become more negative) for zones near the outlet surface. 
This latter trend is found at higher values of BNO where the outlet 
surface attains higher temperatures. Results for BNO = 0 exhibit a 
lower limit when radiation effects are considered. Wall heat flux re
sults for PC are dependent on BNO as shown by equation (3) when 
the radiation terms are neglected and are presented for BNO = 9.29 
m2 with St = 0.001 and 0.01. Effects of St increase as BNO increases 
and become significant for BNO = 9.29 m2. 

Representative total wall heat flux values as evaluated from 
equation (4) are presented in Table 2 for cooling and heating gas cases 
with LID = 1.25. Results for PR where St = 0 may be interpreted as 
those for RC with St = 0.001. For the cooling gas, total wall heat flux 
results are insensitive to St and, thus, convective transfer is negligible. 
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Table 2 Total wall heat flux 
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Fig... 3 Effect of wall temperature 

The influence of St becomes greater for heating gas at the higher 
values of the Boltzmann number. For a specified St, total wall heat 
flux increases for both cooling and heating gas cases as BNO and/or 
difference between inlet gas and tube wall temperatures increase. 

The overall energy balance defined by equation (5) yielded errors 
based on the inlet gas enthalpy rate or qe for BNO = 0 of less than 3 
and 10 percent for cooling and heating gas cases, respectively, with 
maximum errors occuring at the small BNO values. These errors are 
mainly attributed to large changes in gas temperature in the first few 
volume zones and, thus, finer zone widths are required to attain better 
accuracy. 

The effect of wall temperature level on gas temperature and wall 
heat flux distributions may be examined by reference to Fig. 3 where 
PR results are shown for cooling and heating gas cases. Results for PR 
are only presented since they are representative of those for RC. Gas 
temperature level increases for both cases as the tube wall tempera
ture increases. Furthermore, as the difference between inlet gas and 
wall temperatures increases, the effect of BNO on gas temperature 
also increases. Wall heat flux values for cooling gas are initially higher 
for 8S = 1.0 due to the larger temperature difference but as the axial 
distance increases, a cross over is exhibited and heat flux results are 
lower for the same wall temperature. This crossover is attributed to 
the contribution of outlet surface which attains a higher temperature 
for 9, = 2.25. For heating gas, wall heat flux values increase as tem
perature increases. The effect of BNO on wall heat flux increases as 
inlet gas and wall temperature difference increases for both cases. 

The influence of LID is illustrated in Fig. 4 where results for PR 
are presented for both cooling and heating gas cases with BNO = 0.929 
and 9.29 m2. Results for wall heat flux are displayed only for BNO = 
9.29 m2. L/D does not have a significant effect on the gas temperature 
profile and similar trends are observed for all values of this ratio. Only 
the outlet gas temperature and gas temperature for zones near the 
outlet surface are affected by LID. The effect of the outlet surface, 
however, decreases as the LID and BNO increases. Wall heat flux 
decreases as LID increases and this influence is greater for the heating 
gas. For cooling gas with L/D = 2.5, wall heat flux values are nearly 
independent of axial position for values of x/D > 1.5, whereas for 
heating gas, this occurs only for axial positions near the tube cen
ter. 

Conclusion 
Results of this study demonstrate that inclusion of radiative 

transfer with convective transfer influences gas temperature distri
bution for the conditions treated. For a cooling gas, the gas temper
ature decreases monotonically with axial distance and for heating gas, 
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it increases. Pure convection results and those for a stagnant gas yield 
two outer limits and all other results for pure radiation and those for 
combined radiation and convection are bracketed by these two limits. 
The Stanton number does not influence the gas temperature signif
icantly and for the Boltzmann number less than 9.29 m2, pure radia
tion results predict results for combined radiation and convection 
accurate to within 5 percent for cooling gas and 10 percent for heating 
gas. Gas temperature increases for a cooling gas and decreases for a 
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Fig. 4 Effect of length to diameter ratio 
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hea t ing gas wi th increase in t h e B o l t z m a n n n u m b e r . As t h e in le t gas 

or wall t e m p e r a t u r e increases , gas t e m p e r a t u r e levels also increase. 

T h e length to d i ame te r ra t io does n o t have any qual i ta t ive effect on 

the gas t e m p e r a t u r e profile b u t it does d e t e r m i n e t h e ou t l e t gas 

t e m p e r a t u r e . 

Wall h e a t flux values decrease monotonica l ly wi th axial d i s t ance 

and then may increase near the outlet as a result of the radiant energy 

contr ibut ion from the out le t surface which becomes more i m p o r t a n t 

as the B o l t z m a n n n u m b e r increases . T h e S t a n t o n n u m b e r does no t 

influence wall hea t flux values for cooling gas b u t for hea t ing gas, 

significant effects are observed par t i cu la r ly a t t h e higher values of 

the Bo l t zmann number . Wall hea t flux values also increase with inlet 

and wall t empe ra tu r e . T h e length to d i ame te r ra t io pa rame te r affects 

wall h e a t flux d i s t r ibu t ion due to con t r ibu t ion from t h e ou t le t sur

face. 

Acknowledgments 
T h e a u t h o r s wish to acknowledge m a n y helpful discussions wi th 

R. G. Her ing dur ing t h e init ial s tages of th i s s tudy . C o m p u t e r funds 

for th i s s t udy were furnished by t h e G r a d u a t e College. 

R e f e r e n c e s 
1. Wassel, A. T., Edwards, D. K., and Catton, I., "Molecular Gas Radiation 

and Laminar or Turbulent Heat Diffusion in a Cylinder With Internal Heat 
Generation," International Journal of Heat and Mass Transfer, Vol. 18,1975, 
pp. 1267-1276. 

2 Hottel, H. C., and Sarofim, A. F., Radiative Transfer, McGraw-Hill, New 
York, 1967. 

3 Hottel, H. C , and Sarofim, A. F., "The Effect of Gas Flow Patterns on 
Radiative Transfer in Cylindrical Enclosures," International Journal of Heat 
and Mass Transfer, Vol. 8, 1965, pp. 1153-1169. 

4 Lowe, A., Wall, T. F., and Stewart, I. McC, "A Zoned Heat Transfer 
Model of a Large Tangentially Fired Pulverized Coal Boiler," Fifteenth Sym
posium on Combustion, Tokyo, Japan, 1974, pp. 1261-1270. 

5 Bueters, K. A., Cogoli, J. G., and Habelt, W. W., "Performance Prediction 
of Tangentially Fired Utility Furnaces by Computer Model," Fifteenth Sym
posium on Combustion, Tokyo, Japan, 1974, pp. 1245-1260. 

6 Johnson, T. R., "Application of Zone Method of Analysis to the Calcu
lations of Heat Transfer from Luminous Flame," PhD thesis, Sheffield Uni
versity, 1971. 

7 Whitacre, G. R., and McCann, R. A., "Comparison of Methods for the 
Prediction of Radiant Flux Distribution and Temperature," ASME Paper No. 
75-HT-9,1975. . 

8 Nakra, N. K., "Combined Radiation-Convection for a Real Gas," PhD 
dissertation, Mechanical Engineering Program, University of Iowa, Iowa City, 
Iowa, 1975. 

9 Taylor, P. B., and Foster, P. J., "The Total Emissivities of Luminous 
and Nonluminous Flames," International Journal of Heat and Mass Transfer, 
Vol. 17, 1974, pp. 1591-1605. 

10 Erkku, H., "Radiant Heat Exchange in Gas Filled Slabs and Cylinders," 
ScD thesis in Chemical Engineering, M.I.T., 1965. 

11 Nakra, N. K., Smith, T. F., and Hering, R. G., "Direct Exchange Areas 
for Cylindrical Enclosures," Division of Energy Engineering, University of Iowa, 
TR-E-001-76,1976. 

12 Kreith, F., Principles of Heat Transfer, Intext Educational Publishers, 
1973. 

13 Habib, I. S., and Greif, R. "Heat Transfer to a Flowing Non-Gray Ra
diating Gas: An Experimental and Theoretical Study," International Journal 
of Heat and Mass Transfer, Vol. 13, 1970, pp. 1571-1582. 

14 Perlmulter, M., and Siegel, R., "Heat Transfer by Combined Forced 
Convection and Thermal Radiation in a Heated Tube," JOURNAL OF HEAT 
TRANSFER, TRANS. ASME, Series C, Vol. 84, 1962, pp. 301-311. 

Journal of Heat Transfer FEBRUARY 1977 / 65 

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



T. S. Chen 
Department of Mechanical and Aerospace 

Engineering, 
University of Missouri—Rolla, 

Rolla, Mo. 

E. M. Sparrow 
Department of Mechanical Engineering, 

University of Minnesota, Minneapolis, Minn. 

A. Mucoglu 
Department of Mechanical and Aerospace 

Engineering, 
University of Missouri—Rolla, 

Rolla, Mo. 

Mixed Convection in Boundary 
Layer Flow on a Horizontal Plate 
The effects of buoyancy-induced streamwise pressure gradients on laminar forced convec-
tive flow and heat transfer over a horizontal flat plate are studied analytically by the local 
similarity and local nonsimilarity methods of solution. Numerical results for the local sur
face heat transfer, wall shear stress, and velocity and temperature distributions are pre
sented for gases having a Prandtl number of 0.7. It is found that both the local Nusselt 
number and the friction factor increase with increasing buoyancy forces for aiding flow 
and decrease with increasing buoyancy forces for opposing flow. With regard to the heat 
transfer results, significant buoyancy effects were encountered for Grx/Rex

5/2 > 0.05 and 
< —0.03, respectively, for aiding and opposing flows. The buoyancy-affected velocity pro
files for the aiding-flow case exhibited an overshoot beyond the free stream velocity. Re
sults from previously reported series solutions and from an integral momentum/energy 
solution were found to be accurate only when the buoyancy effects are small. The present 
study provides results for intermediate range buoyancy force effects, which have not been 
reported previously. 

Introduction 

In studying forced convective heat transfer over a horizontal sur
face, it is customary to neglect the effects of buoyancy forces. Such 
a practice may not be justified when the velocity is small and the 
temperature difference between the surface and ambient is large. This 
is because the buoyancy forces arising from the temperature difference 
induce a longitudinal pressure gradient which in turn modifies the 
flow field and hence the rate of heat transfer from the surface. Thus, 
predictions of the heat transfer coefficients in the combined convec
tion regime are of practical interest, as are the conditions under which 
the buoyancy forces first become significant. 

In contrast to the problem of combined convective heat transfer 
along a vertical flat plate or cylinder, lesser attention has been given 
to studies of buoyancy force effects on laminar forced convection over 
a horizontal flat plate. Sparrow and Minkowycz [l]1 and Mori [2] were 
the first investigators to treat this problem, Their solution was a 
perturbation series in terms of the buoyancy parameter £ = [Gr^l/ 
Re.v

5/2, and the series was carried through the first two terms. Their 
results are, therefore, valid only for small buoyancy force effects. 
Subsequently, Hauptmann [3], Redekopp and Charwat [4], Leal [5], 
Hieber [6], and Robertson, et al. [7] re-examined the same problem 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
September 3,1976. 

under various restrictions. Hauptmann [3] employed the approximate 
integral momentum/energy method and obtained solutions via a 
two-term perturbation series limited to small values of £. Leal's 
analysis [5] pertains particularly to the limiting cases of very large and 
very small Prandtl numbers (i.e., Pr -«- <= and Pr —>- 0, respectively) 
and was carried out using the method of matched asymptotic ex
pansions. 

In his analysis, Hieber [6] obtained solutions for a forced-flow 
dominated near region (J « 1) and for a buoyancy dominated far re
gion (£ » 1), the solutions for both regions being expressed by suitable 
three-term perturbation series in £. Surprisingly, for the small £ region, 
the use of an additional term beyond those of [1] did not result in an 
improvement of the predictions of the heat transfer coefficient. In the 
range between the small £ and large £ solutions, a graphical interpo
lation was suggested as a means for estimating the heat transfer re
sults. The analysis of Robertson, et al. [7] is for a plate of finite length 
situated in a low Reynolds number flow and is, therefore, different 
from that for boundary layer flow at relatively large Reynolds num
bers. These workers solved the full momentum and energy equations 
by a finite difference method. In their study, Redekopp and Charwat 
[4] dealt with the situation in which the free stream velocity varies 
as a power of streamwise coordinate. Their solutions were expressed 
in perturbation series as in [1]. 

For boundary layer flow of gases (Pr ~ 0.7), firmly established 
combined convection results are available for £ « 1 and £ » 1, but not 
for the practically interesting intermediate range, say up to £ = 1. This 
has motivated the present investigation. As will be shown shortly, the 
present formulation of the problem and its solution method differ 
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from those of the previous studies and, in particular, the £ limitations 
related to perturbation series are lifted. The conservation equations 
are transformed such that they can lend themselves to local non-
similarity solutions. As is well established, in the local nonsimilarity 
method all the terms in the transformed conservation equations are 
retained, and terms are selectively neglected only in the derived 
subsidiary equations. This accounts for the high accuracy of the nu
merical results provided by the local nonsimilarity solution meth
od. 

Numerical solutions and results were obtained for Pr = 0.7, in
cluding both the cases in which the buoyancy, respectively, aids and 
opposes the forced convection flow. For the aiding case, the solutions 
encompassed the range of £ between zero and one. The opposing flow 
solutions were for £ between zero and 0.03. 

Analysis 
Consider a horizontal flat plate aligned parallel to a uniform free 

stream with velocity u„ and temperature T„. The plate is maintained 
at a constant temperature T,„. As demonstrated in [1], the buoyancy 
force associated with the temperature difference (T,„ — Tm) induces 
a streamwise pressure gradient which interacts with the laminar 
forced convection boundary layer adjacent to the plate. The coordi
nates are chosen such that x represents the distance along the plate 
from its leading edge and y represents the distance normal to the 
surface. It is convenient to take y as positive in the vertical upward 
direction for flow above the plate and as positive in the vertical 
downward direction for flow below the plate. The sign of the gravity 
force responds appropriately to the assigned direction for y. 

In the analysis, the fluid properties are assumed to be constant 
except that the density variations within the fluid are considered only 
to the extent that they contribute to the buoyancy forces. The gov
erning equations for the problem under consideration are the fol
lowing boundary layer equations [1] 

du/dx + du/dy = 0 (1) 

u(du/dx) + v(du/dy) = u(d2u/dy'2) 

±g0d/c>x[j" ( T - T „ ) d y j (2) 

u{dT/dx) + u(dT/dy) = a(d2T/dy2) (3) 

in which u and v are, respectively, the velocity components in the x 
and y directions, T is the fluid temperature, fi is the expansion coef
ficient, v is the kinematic viscosity, and a is the thermal diffusivity. 
The second term on the right-hand side of equation (2) is the pressure 
gradient due to buoyancy. The plus and minus signs preceding that 
term pertain, respectively, to flow above and below the plate. The 
boundary conditions for equations (l)-(3) are 

u = u = 0, T = T„, at y = 0 

u —• u_, T -» T_ as y -» "> (4) 

As the first step in solving the system of equations (l)-(4) by the 

local nonsimilarity method, it is necessary to make a transformation 
from the (x, y) coordinates to the (£(x), ri(x, y)) coordinates by in
troducing 

£ = £(*)> V = y^uJvx (5) 

The coordinate TJ(X, y) is a pseudo-similarity variable which reduces 
to a true similarity variable for boundary layers that are similar. The 
coordinate £(x) depends only on x and is so chosen that x does not 
appear explicitly in the transformed conservation equations and their 
boundary conditions. In addition, one introduces a reduced stream 
function F({, v) and a dimensionless temperature 0(£, n) defined, re
spectively, as 

F(i v) = <Hx, y ) M ^ I , 8(t r,) = (T- T„)/(TW - T„) (6) 

wherein \p(x, y) is the stream function that satisfies the continuity 
equation (1) with 

d\j//dy, v = — (di/'/dx) (7) 

Substitution of equations (5) and (6) into equations (2)-(4) results 
in the following system of equations 

F'" + H,FF" ± U \n0 + j " Odr, + $ j " " (df l /d£)dJ 

= y 2 £ [ F W / d £ ) - F"(dF/dO] (8) 

(1/Pr)0" + ifeFfl' = MF'(dB/dO - 9'(dF/df)] (9) 

F'(£,0) = 0, F(i,0) = 0, fl(f,0) = l (10a) 

F'(£, ») = 1, 0(£, =°) = 0 (106) 

In the foregoing equations, the primes denote partial differentiation 
with respect to y, Pr is the Prandtl number, and £(x) is found to have 
the expression 

£ = | G r , | / R e , s / 2 

in which 

G r v = ^ ( T „ , :Vc2, ReA- = Uc<,x/i> 

(11) 

(12) 

are, respectively, the local Grashof and Reynolds numbers. 
The use of the absolute magnitude in the definition of f requires 

that additional interpretation be given for the ± sign that appears on 
the left-hand side of equation (8). For flow above the plate, the plus 
and minus signs, respectively, pertain to the cases T„. > T_ and T„. 
< T_. For flow below the plate, the plus sign is associated with T„. < 
Too and the minus sign with T„. > Too. 

To facilitate the solution, the integral terms in equation (8) are 
removed by differentiating the equation once with respect to r\ to yield 
a fourth order differential equation. This, in turn, requires an addi
tional boundary condition for F(£, JJ), which is obtained by evaluating 
equation (8) at rj = 0. If, in addition to F and 0, the dependent vari
ables 

G = dF/di, <l> = d0/d£ (13) 

JSTomenclature-

Cf = local friction factor 
F = reduced stream function, equation (6) 
G = ^-derivative of F 
g = gravitational acceleration 
Grv = local Grashof number, gP(T„, - T_) 

x:1/<,2 

k = thermal conductivity 
Nuj = local Nusselt number, <j„,x/(T,„ — 

T„)k 
Pr = Prandtl number 
qw = local surface heat transfer rate per unit 

area 

Rex = Reynolds number, u„x/v 
T = fluid temperature 
T,„ = wall temperature 
T„ = free stream temperature 
u = axial velocity component 
u_ = free stream velocity 
v = normal velocity component 
x = axial coordinate 
y = transverse coordinate 
a = thermal diffusivity 
(3 = coefficient of thermal expansion 
i) = pseudo-similarity variable, equation 

(5) 

0 = dimensionless temperature, equation 
(6) 

fi = dynamic viscosity 
v = kinematic viscosity 
£ = buoyancy parameter, | Grv | /Re* 5/2 

T„. = wall shear stress 
<j> = ^-derivative of 0 
\p = stream function 

Subscript 

0 = pure forced convection 
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are introduced, the system of equations describing the problem at 
hand can be written as 

F"" + UFF"' + F'F") ± \W =F \iH = W G " - F"'G) (14) 

(1/Pr)0" + W = %£(*"* - 6'G) (15) 

F'(£, 0) = F(£, 0) = 0, 9(f,0) = l (16a) 

f ' U O l ^ f e f°W7,T%f2 f ^ T , (166) 
Jo Jo 

F'(f, «•) = 1, 0(£, <=) = 0 (16c) 

Equations (14) and (15) are two coupled equations with four un
known functions F, G, 0, and tj>. It is to be noted that the present 
problem is unusual among those encountered in boundary layer 
studies in that integrals appear in one of the boundary conditions 
(equation 16b). In the present study, the system of equations (14)-(16) 
will be solved by the local nonsimilarity method. Furthermore, since 
the local similarity solution for the problem has not been previously 
published, it will be presented first. 

The local similarity model corresponds to the first level of trunca
tion in which the terms involving G, G'Vand <l> appearing in equations 
(14)-(16) are neglected. Thus, the governing equations for the local 
similarity model are 

F"" + UFF'" + F'F") ± Ur,0' = 0 

(1/Pr)0" + l/2FS' = 0 

F'U, 0) = F(%, 0) = 0, 8((, 0) = 1 

F " U 0 ) = TV2£ C" Odr, 
Jo 

F'(k, °°) = 1, 0(£, <») = 0 

(17) 

(18) 

(19a) 

(19b) 

(19c) 

In the foregoing equations, F and 0 are coupled and equations (17) 
and (18) must be solved simultaneously. With the values of £ pre
scribed, these equations can be treated as coupled ordinary differ
ential equations and solved by conventional techniques for similarity 
boundary layers. 

The formulation of the systems of equations for the local nonsim
ilarity models will now be briefly discussed. To begin with, one derives 
successive sets of subsidiary equations by differentiating equations 
(14)-(16) with respect to f once to obtain the first set and twice to 
obtain the second set of subsidiary equations, and so on. Certain terms 
in these sets of subsidiary equations are then neglected according to 
the level of truncation at which the solution is being sought (see, for 
example, [8-10]). In the present study, the truncation is at the second 
level (the next level beyond local similarity), and terms containing 
dG/d£ and dr/>/c>£ and their ^-derivatives in the first set of subsidiary 
equations are neglected. However, the transformed conservation 
equations (14) and (15) are left intact. The system of equations for 
the second level of truncation can then be summarized as: 

(a) Equations (14) and (15) 
(6) The truncated equations for G and <l> 

G"" + y2(FG'" + F"G') + F'"G ± &„(0' + &') =F & 

+ U(GG'" - G'G") = 0 (20) 

(1/Pr)0" + W - lh_F'<t> + G6' + M(G<I>' - G'<j>) = 0 (21) 

(c) The boundary conditions 

F'(i, 0) = F(l, 0) = G'(£, 0) = G(i, 0) = 0(f, 0) = 0 

0(£,O) = 1 (22a) 

H £ , 0 ) = T K Codv=fW f" <l>dv (226) 
Jo Jo 

G'"(f,0) = =F% C" Bdv--F-Z C"° 0d„ (22c) 
Jo 2 Jo 

F'(t., =>) = 1, G'(J, =>) = 0(f, «) = (M£, ») = 0 (22d) 

It can be seen that equations (14), (15), (20), and (21) are coupled 
and they must be solved simultaneously for the four unknown func
tions F, G, 0, and <j>. With f regarded as a constant prescribable pa
rameter, these equations may be treated as a system of coupled or
dinary differential equations of the similarity type. 

The primary physical quantities of interest are the local Nusselt 
number Nu t , the local friction factor Cf, the velocity distribution ulu«, 
= F'(£, n), and the temperature distribution (T - T„)/(TW - 71-) = 
0(£, 7i), The first two quantities are defined, respectively, by 

Nu r = 
Qw 

Tw -T„k 7> C / = - z/2 
(23) 

With the aid of equations (5) and (6), along with the definition of the 
wall shear stress r,„ = n(du/dy) v = 0 and the use of Fourier's law Qw — 
-k(dT/dy)y=0, it follows that 

Nuv/VReT = -» ' (£, 0), CfVU^x = 2F"({, 0) (24) 

N u m e r i c a l S o l u t i o n s 
Each of the systems of equations for the local similarity model and 

for the second-level local nonsimilarity model was solved by 
employing the Runge-Kutta integration scheme in conjunction with 
Newton-Raphson shooting method to fulfill the conditions at the edge 
of the boundary layers (i.e., at large IJ values). In the solution for the 
second level of truncation, a predictor-corrector integration scheme 
was employed to improve the accuracy of the Runge-Kutta 
scheme. 

The major difference in the numerical solutions of the present 
problem and those encountered in conventional boundary layer 
problems lies in the handling of the 0 and <j> integrals which appear 
in the boundary conditions F'"(%, 0) and G'"(f, 0), equations (196), 
(226), and (22c). Indeed, the presence of these integrals introduces 
an additional iteration loop into the shooting method. To elucidate 
this matter, we consider the governing equations for the second level 
of truncation. 

To solve these equations for a prescribed value of £, one needs to 
start by guessing the values of the 0 and tfi integrals, in addition to 
guessing the unavailable starting values of F"(f, 0), G"(£, 0), 0'(£, 0), 
and $'(£, 0). These inputs enable the governing equations to be inte
grated across the boundary layer and, simultaneous with this inte
gration, the 0 and <j> integrals are evaluated. These values are employed 
to replace the initial guesses for the 0 and i/> integrals, but the initial 
guesses for F"(£, 0) , . . . , </>'(£, 0) are retained. With these inputs for 
the integrals, the boundary layer integration is repeated and new 
values of the 0 and tj> integrals are obtained, which are used as input 
to still another cycle of boundary layer integration, and so on. This 
procedure is repeated, keeping F"({, 0 ) , . . . , 0'(£, 0) fixed until the 
input and output values of the (I and </> integrals are in agreement 
within a prescribed tolerance. Then, F"({, 0 ) , . . . , 4>'(%, 0) are altered 
in accordance with the shooting method. 

In the numerical computations, the effects of step size At] and 
boundary layer thickness ?/«, on the numerical results as well as on the 
convergence of the solutions were examined in detail. It was found 
that for the second level of truncation, sufficiently accurate numerical 
results were obtained with a step size of A») = 0.02 when the values of 
?)„ were varied from 8 to 6 as the buoyancy parameter Grv/Re_v

5''2 

increased from —0.03 to 1.0. A solution was considered to be converged 
when the difference between the input and output values of the 0 and 
<l> integrals came within 10 - 4 and 10~:l, respectively, and the magni
tudes of the conditions at the edge of the boundary layer F'(S-,ri„) — 
1, F"(t, „„,), 0(£, „ J , 0'(£, u„) and <?'(?, „ J , G ' U „„,), <«£, , „ ) , <//(?, 
J/„) became respectively less than 5 X lO - 4 and 5 X 10~:! simulta
neously. Convergence of the numerical solutions was found to be 
rather difficult to attain when smaller values of the aforementioned 
criteria were imposed. 

R e s u l t s and D i s c u s s i o n 
The numerical solutions were carried out for a Prandtl number of 

0.7, which is typical for gases in general and specifically for air. For 
buoyancy aided flow (Grx/Rev

r ' /2 > 0), the buoyancy parameter 
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Table 1 Results for F"(£, 0) and -0'(£, 0), Pr = 0.7 

G r x / R e x
5 / 2 

-0 .03 

-0 .02 

- 0 . 0 1 

0 

0 . 1 

0 . 2 

0 . 3 

0 . 4 

0 . 5 

0 . 6 

0 . 7 

0 . 8 

0 . 9 

1.0 

Local S i m i l a r i t y 

F " U , 0 > 

0.26576 

0.28918 

0.31119 

0.33206 

0.50358 

0.63974 

0.75769 

0.86387 

0.96162 

1.05290 

1.13900 

1.22084 

1.29909 

1.37421 

- 8 ' U , 0 ) 

0.28075 

0.28510 

0.28905 

0.29268 

0.31928 

0.33733 

0.35141 

0.36311 

0.37320 

0.38212 

0.39014 

0.39746 

0.40419 

0.41044 

Local Nons imi la r i ty 

F " U , 0 ) 

0.27851 

0.29611 

0.31553 

0.33206 

0.47673 

0.58915 

0.60915 

0.77849 

0.85920 

0.93694 

1.00878 

1.07592 

1.14158 

1.20469 

-O 'U .O) 

0.28194 

0.28515 

0.28972 

0.29268 

0.31934 

0.33751 

0.35073 

0.36178 

0.37138 

0.37949 

0.38719 

0.39423 

0.40063 

0.40658 

Or*/Re*5'2 was varied parametrically over the range from zero to one. 
For the case where the buoyancy opposes the forced convection flow 
(Grx/Rex

5 / 2 < 0), solutions were obtained for Gr.v/Re/>/2 = -0 .01 , 
—0.02, and —0.03, but convergence could not be attained for smaller 
(ir.v/Rev

5 '2 values at the second level of truncation. The numerical 
values of 0'(£, 0) and F"(£, 0), which are directly related to the Nusselt 
number and friction factor results, are listed in Table 1 for the 
Gr r/Re.v

5/2 values for which solutions have been obtained. The tab
ulated information has been employed for the preparation of Nusselt 
number and friction factor graphs, and trends will be identified when 
the figures are discussed. 

Local Nusselt numbers are presented in Fig. 1 as a function of the 
buoyancy parameter GrA-/Re.v

5/2, with the results of the present in
vestigation depicted by dotted and solid lines, respectively, for the 
local similarity and second level local nonsimilarity solutions. The 
very close agreement between these two sets of results is a strong in
dicator of their high accuracy. Also shown in the figure are the results 
from the two-term and three-term series solutions of [1] and of [6], 
the integral momentum/energy solution of [3], and the graphically 
based interpolation curve of [6]. 

The Nusselt number trends are consistent with the expected effects 

0.6 

0.5 

0.4 

'0 .3 

0.2 

O. 

0 
-0.2 0 0.2 0.4 0.6 0.8 1.0 

Grx/Ref2 

Fig. 1 Local Nusselt number results, Pr = 0.7 
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Fig. 2 Local friction factor results, Pr = 0.7 

of favorable and adverse pressure gradients. When Gr.v/Re.v
5'2 is 

positive, the buoyancy induces a favorable pressure gradient which 
accelerates the flow and increases the Nusselt number. On the other 
hand, the adverse pressure gradient that is induced at negative 
GrA/Re.r

5/2 values retards the flow and decreases the Nusselt num
ber. 

The present Nusselt number results will now be compared with 
those of other investigators. The close agreement of Hieber's inter
polation curve with the present results is quite remarkable and 
somewhat surprising. The curve was drawn as a reasonable bridge 
between his small Grx /Rex

5 / 2 and large Grx/Re.v
5/2 series solutions, 

and its accuracy, as witnessed by Fig. 1, could not have been forecast 
in advance. 

The other solutions depicted in Fig. 1 yield results of lower accuracy. 
The two-term series overestimates the buoyancy effect and is sub
stantially in error at the larger abscissa values. The results of the 
three-term series do not show an improvement compared with those 
of the two-term series, only a change in the sign of the error. The range 
of validity of both series appears to be confined to Grx /Rex

 5 /z values 
less than 0.1. The integral momentum/energy solution yields a linear 
variation which also substantially overestimates the buoyancy effect 
for Gr.v/Re/ ' / 2 > 0.2. 

Another perspective on the Nusselt number results will be pre
sented shortly, following the skin friction results. The latter are 
plotted in Fig. 2. The skin friction is seen to increase markedly in re
sponse to a favorable buoyancy-induced pressure gradient. For neg
ative Gr r /Re r

r , / 2 , the skin friction drops off sharply as the adverse 
pressure gradient retards the flow. It is reasonable to expect that as 
Grv/Re.v

 5/2 becomes more negative, the strengthening of the adverse 
pressure gradient will ultimately cause flow separation. Although the 
range of computed negative Grx /Re.v

 5/2 values is too small to permit 
a definite determination, it appears that separation could occur for 

Gr, /ReA
s / 2 0.1. Fig. 2 also contains a straight line depicting the 

two-term series solution. As for the Nusselt number, the series solu
tion also overestimates the effect of buoyancy on the skin friction. 

The skin friction values from the local similarity and second level 
local nonsimilarity solutions do not agree quite as well as the Nusselt 
number results. This outcome is consistent with the greater sensitivity 
of the skin friction to the buoyancy-induced pressure gradient, 
thereby making it more sensitive to any approximations in the anal
ysis. Previous experience based on solutions carried to the third level 
of truncation suggests that the second level results of Fig. 2 are of 
sufficient accuracy for any practical purpose, especially since the skin 
friction is not of major importance for very low speed flows. 

The extent to which the forced convection Nusselt numbers and 
friction factors are affected by the buoyancy-induced pressure gra
dient is most effectively visualized in terms of the ratios Nux/NuXlo 
and C/-/C/.0. The reference quantities Nu^.o and C/fi respectively de
note the local Nusselt number and friction factor for pure forced 
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Fig. 3 Buoyancy-induced departures of the local Nusselt number and friction 
factor from pure forced convection, Pr = 0.7 

convection. The departure of these ratios from unity provides a direct 
measure of the influence of buoyancy. 

In Fig. 3, Nuv/Nu.r o and C//C/,o are plotted as a function of the 
buoyancy parameter Grv/ReA

s/2 with different ordinate scales being 
employed to accommodate the difference in the magnitudes of the 
Nusselt number and friction factor ratios. Inspection of the figure 
indicates that whereas both NuA- and C/ increase as the buoyancy 
parameter increases, the Nusselt number is much less responsive to 
the buoyancy. For instance, for GrA/ReA-5/2 = 0.5, Nu t /Nu t ]o is about 
1.27 while Cf/Cfg is about 2.6. The lesser responsiveness of the Nusselt 
number is in evidence for opposing flow conditions as well as for aiding 
flow conditions. 

The results of Fig. 3 also enable the thresholds of significant 
buoyancy effects to be identified. If the thresholds are defined by five 
percent departures from pure forced convection, then for the case of 
aiding flows, buoyancy effects become significant at GrA/ReA

5/'2 values 
of 0.05 and 0.01, respectively, for heat transfer and friction. For op
posing flows, the GrA/ReA

5/2 threshold for friction is —0.01 while the 
heat transfer threshold is about —0.03. 

It is interesting to see how the buoyancy induced pressure gradient 
affects the velocity and temperature fields in the boundary layer. To 
this end, representative velocity profiles for several values of the 
buoyancy parameter Gr.,/Rev

5/2 are shown in Fig. 4. It is seen from 

1 I I 1 
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| \ \ \ G r x / R e X 
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Fig. 4 Representative velocity profiles, Pr = 0.7 
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Fig. 5 Representative temperature profiles, Pr = 0.7 

the figure that for assisting flow, the velocity gradient at the wall in
creases as the buoyancy increases, with an accompanying increase in 
the velocity near the wall and an overshooting of the velocity beyond 
its free stream value. At GrA/ReA

5/2 = 1, for example, the overshoot 
is about 11.5 percent. For the opposing flow, on the other hand, the 
effect of buoyancy is to reduce the velocities compared to those for 
pure forced convection. For even smaller Grv/ReA

5 '2 values, S-shaped 
profiles typical of retarded boundary layers are expected. 

In Fig. 5 are shown representative temperature profiles. The most 
noteworthy trends with increasing buoyancy for the case of assisting 
flow are the increase in temperature gradient at the wall and the de
crease in the thermal boundary layer thickness. The opposite trends 
are in evidence for the case of opposing flow. 

Conclusions 
The effect of buoyancy-induced streamwise pressure gradients on 

forced convection boundary layer flow over a horizontal flat plate has 
been analyzed by the local nonsimilarity method of solution. Nu
merical results have been obtained for values of the buoyancy pa
rameter Grv/ReA

r ' /2 between -0.03 and 1.0 and for a Prandtl number 
of 0.7. With respect to the heat transfer results, significant buoyancy 
effects are encountered for GrA/ReA

ft/2 > 0.05 and for Gr,/ReA
5 / 2 < 

—0.03, respectively, for aiding and opposing flows. For GrA/ReA
r>/2 = 

0.5, the increase in the Nusselt number due to buoyancy is about 27 
percent. The skin friction is much more affected than is the heat 
transfer. For instance, at GrA/ReA

5/2 = 0.5, the friction factor in the 
presence of buoyancy is about 2.6 times that of a corresponding forced 
convection flow. The buoyancy-affected velocity profiles for the 
aiding-flow case exhibit an overshoot beyond the free stream veloci
ty. 
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Free Convection Along A 
Nonisothermal Vertical Flat Plate 
A technique has been developed for the solution of free convection problems on a vertical 
flat plate with arbitrary (though smooth) temperature or heat-flux distributions. The 
general theory is developed with local similarity as a first approximation, and universal 
functions for improvement. Comparisons with highly accurate numerical solutions val
idate the use of one simple correction term for most applications. Computations are readi
ly performed with the use of a hand-held mini-computer. Four illustrative computational 
examples are carried out with the aid of the two working charts provided for air. 

Introduction 

The purpose of this paper is to present a rapid and accurate method 
for the computation of heat-transfer parameters for free convection 
along a vertical flat plate subjected to arbitrarily prescribed wall 
temperature or wall heat flux. Very few publications on this subject 
is presently available in the existing literature. Finite-difference type 
of numerical computational programs have been reported for the cases 
of constant wall temperature and a step-jump discontinuity in wall 
temperature [1,2].' There are Karman-Pohlhausen type of approxi
mate solutions in references [3, 4, 5, 6], and similarity solutions for 
free convection over a nonisothermal vertical plate have been provided 
by Sparrow and Gregg [7] and by Finston |8] . Yang [9] has verified 
that the similarity possibilities have, essentially been covered by these 
authors; namely, the cases of power-law and exponential dependence 
of wall temperature upon elevation. Gebhart and MoUendorf [10] have 
included viscous dissipation in their analysis, and have provided more 
extensive solutions for the foregoing cases. 

Foote [11] had discussed the possibility of solving the general 
problem in power series, and solutions for a number of particular cases 
have been obtained by Niuman and Pohlhausen [12]. A Gortler-type 
of series expansion has been tried by Kelleher and Yang [13], to ac
commodate more general wall temperature variations. Kuiken [14] 

1 Numbers in brackets designate References at end of paper. 
Contributed by The Heat Transfer Division and presented at the Winter 

Annual Meeting, Houston, Texas, November 30-December 5, 1975, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Revised manu
script received by the Heat Transfer Division October 22, 1976. Paper No. 
75-WAIHT-15. 

also obtained an expansion for the case where wall temperature 
variation is expressed in a power series in the stream-wise coordi
nate. 

In what follows, a coordinate transformation is introduced to treat 
the problem of nonisothermal free convection with rather general wall 
temperature or heat flux distribution. A new parameter, character
izing the nonisothermal conditions of the wall is introduced. The re
sulting transformed equations are solved by an asymptotic method 
which has been used successfully by Kao and Elrod [15], and Kao [16] 
recently in their treatment of nonsimilar boundary layer equa
tions. 

The present method yields exceptionally accurate results, and desk 
computations can readily be carried out. Graphs and tables are pro
vided for the cases of Prandtl number equal to 0.7 to facilitate such 
computation. Four examples are given to illustrate the present 
technique. Since no numerical solutions seem to be available for 
comparison, a difference-differential numerical computation program 
(see Appendix) was developed to permit comparisons, and thereby 
demonstrate the effectiveness of the present method. 

Transformation of Boundary Layer Equations 
A detailed analysis of free convection under general conditions has 

been given recently by Kuiken [17]. Here we shall limit ourselves to 
the usual boundary-layer equations. Those governing free convection 
over a vertical flat plate with either prescribed wall temperature or 
heat flux are given by: 
Continuity 

du/dx + dv/dy = 0 

Momentum 

udu/dx + vdu/dy = gP(T - T„) + vd2u/dy2 

(1) 

(2) 
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Fig. 1 Coordinate system 

Energy 

dT/dx + udT/dy = ad2T/dy2 (3) 

with boundary conditions 

u(x, 0) = v(x, 0) = 0, u(x, ») = 0, T(x, °=) = T«, (4) 

T(x,0) = Tw(x) or dT(x,0)ldy=-qw(x)lk (5) 

The coordinate system is shown in Fig. 1. 
Mass continuity is satisfied automatically by the introduction of 

a stream function \j/, defined as 

u = dypldy 

v = —d\p/dx 

(6) 

(7) 

In order to lessen the dependency of the solution on the stream-wise 
coordinate, we introduce the following coordinate transformation: 

£ = C* F(x)dx (8) 

Jo 

x = CiF(x)1/2y/e/4 (9) 

TV — Too for the case of prescribed variable wall tem-
where F(x 
perature, and, 

F(x) = Q2/3(5/6 P ' Q2'3dx] 

Q(x) = qa(x)/Cik 

1/5 (10) 

(11) 

(12) 

for the case of prescribed variable wall heat flux. 
One can easily verify that, for the case of power-law distributions 

of wall temperature or heat flux, the foregoing coordinate transfor
mations reduce essentially to those of the similarity cases given by 
Sparrow and Gregg [7]. The following nondimensional stream func
tion and nondimensional temperature are introduced. 

/ ( J , x )=F(x ) i / 2 ^ /4C 1 ^W (13) 

0(J,*) = ( T - T „ ) / F U - ) (14) 

The resulting transformed equations are: 

f" + (3 - 2,3)//" - 2/'2 + 6 = mf'df'/di - f'df/dO (15) 

0"/Pr + (3 - 2~p)f0' - ifcfO = mf'd6/dZ - 9'df/dO (16) 

where 

5 = yF(x)2dF/dx (17) 

Here primes denote derivatives with respect to K. The boundary 
conditions are given in the following: 

/(£, 0) = / U 0) = 0, / ' ( £ , » ) = ( ) , 9($,a,) = o (18) 

9(£,0) = 1 or 9'(£,0) = - l (19) 

For the case of prescribed wall temperature, the nondimensional 
heat transfer parameter at the wall is: 

0'U, 0) 
Nu,-/Grr 

where 

and 

1/4 = _ : 

V2 
- [(T,„ - TJixj £X (Tw - T„)dx J'* 

(20) 

Nu, = hx/k 

Gy-x=gfS(Tw-T„)x*h2 

• N o m e n c l a t u r e * 

/ = nondimensional stream function 
F = defined in equation (10) 
S = gravitational acceleration 
Grx = g]i(Tu, - T„)x3/p 
h = heat transfer coefficient 
k = thermal conductivity 
Nu;v = hx/k 
Pr = Prandtl number 
T = temperature variable 
u = velocity in the x-direction 
v = velocity in the y-direction 

x = coordinate along the plate 
y = coordinate normal to the plate 
a = thermal diffusivity 
/5 = wall temperature or heat flux variation 

parameter as defined in Eq. (17) 
(3 = coefficient of volumetric expansion 
e(0) = 4Hd~P/dt; 

\p = stream function 
£ = transformed stream-wise coordinate 
x = transformed normal coordinate 
t) = (T- T„)/F 

ii = kinematic viscosity 

Subscripts 

W = surface condition 
<» = conditions in the ambient 
0 = zero order solution 
1 = first order solution 

Superscript 
1 = derivative with respect to the indepen

dent variable 
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p 
1.0 

0.8 

0.6 

0.I4 

0.2 

0 

0.2 

0.1, 

0.6 

0.8 

1.0 

1.2 

-1.lt 

-1.5 

Prescribed Wall 

-0.731* 

-0.69U6 

-0.6511 

-0.601,0 

-0.553U 

-0.14995 

-0.14,23 

-0.3821 

-0.3188 

-0.2527 

-0. 1838 

-0.1122 

-0.0380 

0 

Table 1 
Temperature 

•OfS, 0) 
0.6369 

0.61,53 

0.6537 

0.6621 

0.6705 

0.6789 

0.6872 

0.6951, 

0.7036 

0.7117 

0.7197' 

0.7276 

0.7351, 

0.7393 

Preacribed Wall 

0c(|9,O) 

1.2802 

1.3385 

1.1,096 

1.U968 

1.6053 

1.7U25 

1.9201, 

2.1591 

2.6956 

3.0058 

3.8780 

5.7556 

13.6787 

00 

Heat Flux 

-f."<M 
0.7665 

0.0830 

0.81,57 

0.8961 

0.9563 

1.0296 

1.1211 

1.2387 

1.2970 

1.621,6 

1.9889 

2.7038 

5-2311 

L o c a l S i m i l a r i t y S o l u t i o n 

Before proceeding to the present method of solution, it is useful to 
examine equations (15) and (16) from the standpoint of local simi
larity. No application of the local similarity concept appears to have 
been published for the present problem. This is probably due to the 
fact that the transformation for the stream-wise coordinate equations 
(8), (10), and (11) has never previously been applied. By this 
concept, the right-hand sides of equations (15) and (16) are pre
sumably rendered small, and, as a first approximation, may be dis
carded. The resulting equations become a set of ordinary differential 
equations with 0 appearing only as a parameter. The solution at each 
stream-wise station becomes locally autonomous, and is completely 
independent of the solutions at other stream-wise locations. Thus, 

/ ' " + (3 - 20)ff" - 2/'2 + 0 = 0 

8"/Pi + (3 - 2/3)/0' - 4/3/'0 = 0 

(21) 

(22) 

/(*, 0) =/ ' (£, 0) = 0, / U » ) = 0, 0(|, c=) = 0 (23) 

0(f,O) = l or <?'(£, 0) = - l (24) 

Uncertainty concerning the neglect of the right-hand side of 
equations (15) and (16) is the weakness of this local similarity con
cept. 

Equations (21)-(24) have been solved by us on an IBM 360/91 
computer. A standard shooting technique as described by Nachtsheim 
and Swigert [18] is used. The results are tabulated in Table 1 and Fig. 
2, for a Prandtl number of 0.7. 

P r e s e n t M e t h o d 

In the present analysis, we first change from the (£, x) coordinates 
to the (/?, x) coordinates. 
Thus, 

f" + (3 - 20)ff" - 2/'2 + 0 = SKfW/dfl - fdf/d'P) (25) 

0"/Pr + (3 - 20) f 8' - 4~0f'O = t(0)(f'd8/d~0 - 8'df/d~0) (26) 

where 

e(0) = 4Hd~pm (27) 

Note that if e(0) is zero, the foregoing equations admit similarity so
lutions automatically. Thus it would appear to be possible to generate 
expansions for / and 0 with t(0) treated as a small parameter. 

Next, we seek to expand 0, f, and 8 into power series of e(0). 
Thus, 

0 = 0 + e(/3)A0(/3) + 62Ai + . . . 

f = h(0,x) + t(0)fi(0,x) + H2 + • • • 

8 = 0O(/J, x) + e(~0)81(0, x) + e282 + ••• 

(28) 

(29) 

(30) 

where 0 is a shifted value of 0. Upon substituting the foregoing ex
pressions into equations (25) and (26), and equating like terms of 
power of e(0), the first two sets of equations are: 
Order unity 

/o'" + (3 - 20)fofo" ~ 2/0 '2 + 0O = 0 (31) 

0o"/Pr + (3 - 2/3)/W - 4/?/o'0o = 0 (32) 

foW, 0) = fo'W, 0) = 0, fo'(0, co) = 0, 0o(/3,oo)=o (33) 
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Fig. 2 Zero order solutions 
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Fig. 3 A0 for prescribed wall temperature case 

In addition, if the wall temperature is specified 

Mft, 0) = 1 

and if the heat flux is specified 

»o'(ftO) = - l 

Order e. 

(34a) 

(346) 

/ , ' " + (3 - 2 / W i " " (4 + t'Wfi' + O - 20 + e'W'h + #1 

= (1 - e'Ao)(fo'dfo'/df3 - fQ"dfQldli) + 2A0/o/o" (35) 

fli*/Pr + (3 - 2ftVo<V - (4/3 + e')/o'0i 

= (1 - c'AoHfo'deoW - Oo'dfo/dp) - (3 - 2/} + e 'W/ i 

+ 4/3/o'0o + 2Ao(2/o'0o + /o»o') (36) 

The function Ao (and thus fi) is found by requiring that the zeroth 
order solution B0 approximate as closely as possible either the wall heat 
flux (when wall temperature is specified) or the wall temperature 
(when wall heat flux is specified). In the case of specified wall tem
perature, 8\ (ft t', 0) = 0 is needed to satisfy the boundary condition, 
and B\ (ft e', 0) is set to zero in order that the zeroth order solution 
should by itself yield wall heat flux with accuracy to the order t. In the 
case of specified wall heat flux, B\ (ft e', 0) = 0 satisfies the boundary 
condition, and di (ft e, 0) is set to zero in order that OQ at the wall will 
provide a good approximation to the wall temperature with accuracy 
of order e. In each case, the overconstrain in boundary conditions leads 
to determination of Ao, the shifting function in the assigned value of 
fi renders a most accurate local similarity solution. Thus, the following 
boundary conditions are specified for equations (35) and (36): 

fi(P, 0) = /, '(ft 0) = BdP, 0) = fli'(ft 0) = 0 (37) 

/i'(ft ») = 0i(ft ») = 0 (38) 

Note that Ao depends on two parameters (i.e., ft e') where e' is given 
at the stream-wise station of interest. Once Ao is found, the value of 
13 can be found from equation (28), which is an implicit algebraic 
equation and can readily be solved either by iteration or by a graphical 
method. As with the local similarity model, the present method can 
be carried out without having to determine solutions for upstream 
stations. All necessary upstream wall information is built into the 
parameters ft and e'. 

Equations (35) and (36) involve derivatives of/0 and do with respect 

to ft The primary difficulty lies in computing these nonhomogeneous 
terms. If a finite-difference method is used, a number of similarity 
solutions in the neighborhood of (3 must be known to a high precision. 
This difficulty can be resolved by introducing two auxiliary equations 
for g = df0ld(i and h = dl)0/dfi. By differentiating equations (31)-(34), 
we get: 

£'" + (3 - 2ftVog" - 4/0 'g' + (3 - 2fi)f0"g + h = 2/0/o" (39) 

h"/Pr + (3 - 2ftl/0/? - 4/Wfi = 4/o'tfo + 40Og' + 2/0<V 

- (3 - 2P)0Q'g (40) 

with boundary conditions given by 

gW, 0) = g'(0, 0) = g'(ft ») = £(ft ») = 0 (41) 

h(fl, 0) = 0 for prescribed wall temperature 

or 

/j'(ft 0) = 0 for prescribed wall flux (42) 

Thus equations (31)-(42) were solved as a system of ordinary differ
ential equations. A standard shooting technique was used. Results 
for Ao when Pr = 0.7 are presented in Pigs. 3 and 4. Results for ft'(ft 
0) in the prescribed wall temperature case, and for n(ft 0) in the 
prescribed wall flux case are given in Fig. 2. 

In the next section, four examples will be considered. 

Sinuso ida l Wall T e m p e r a t u r e Var ia t ions 
In this example, we shall illustrate the typical procedure for de

termining the wall heat flux by the present method. With the wall 
temperature given at selected locations along the wall, £ can be eval
uated by the trapezoidal rule starting from the leading edge, using 
equation (8). Next, a central differencing scheme can be used to 
evaluate all the derivatives, fi and e are next determined from equa
tions (17) and (27) respectively, and then e'. Once this information 
at a particular location is known, we can proceed to calculate the heat 
flux using the technique presented in the previous section. In the 
present example; we select the location x = 1.8, thus 

(a) x = 1.8, (S = -0.29f2, « = -7.7723, (' = 19.1415; 
(b) now guess fi = —0.2; 
(c) from Fig. 3 A,, = 0.0242; 
id) equation (28) gives an improved fi = —0.103; 
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Fig. 4 A0 for prescribed wall heat flux case 

(e) from Fig. 3, we find that Ao is essentially the same as before. 
Then from Fig. 2, flo'(0, 0) = -0.475. 

The foregoing result, as well as others, is set forth in Table 2 and 
in Fig. 5. 

Comparison in Fig. 5 of our nondimensional heat-flux with that 
from the difference-differential solution development in the Ap
pendix, shows excellent agreement. Also shown are results from the 
local-similarity model. As can been seen, the local-similarity method 
gives considerable error at points far away from the leading edge. 

Exponential Wall Temperature Variation 
For this case, the wall temperature variation is given by: 

Tw-T^ •Ae" 

where x is the position along the vertical plate. As pointed out by 
Gebhart and MoUendorf [10], the similarity solution obtained for this 
case by Sparrow and Gregg [7], is, in fact, an asymptotic solution for 
x -» oo, or for a vertical plate starting from x = — » . The present 

Table 2 Free connection with sinusoidal wall temperature variations 

-
0 

0.2 

0.1, 

0.6 

0.8 

1.0 

1.2 

1.1, 

1.6 

1.3 

2.0 

2.2 

2.3 

2.1, 

2.6 

2.8 

V T » 

0 

0.1987 

0.3851, 

0.561,6 

0.7171, 

0.81,15 

0.9320 

O.98SI1 

0.9990 

0.9736 

0.9053 

0.8085 

0.71,57 

0.6755 

0.515S 

0.3380 

5 

0 

0.01987 

0.07868 

0.171,2 

0.3023 

0.1,582 

0.6355 

0.8273 

1.0258 

1.2231 

1.1,115 

1.5832 

1.6609 

1 .731 ' 

1.8507 

1.5307 

1 

0 .5 

0.1,899 

O.WW 

0.14,81 

0.1,066 

0.31,72 

0.2632 

0.1U,0 

-0.02977 

-0.2912 

-0.7055 

-11,157 

-1.9863 

-2.7798 

-5.9286 

E 

0 

-0.02556 

-0.08521, 

-0.2122 

-0.1,296 

-0.7887 

-1.3595 

-2.1,81,2 

-11-5117 

-7.7723 

-17.6310 

-1,1.036 

-61.0638 

-116.852^ 

e ' 

3.3652 

1,-1,651 

5.0567 

5.7136 

6.7636 

8.314,0 

10.6229 

12.1510 

19.11,15 

29.5809 

W.836 

55.581,2 

P 

o.S 

0.1,911 

0.1,782 

0.1,5143 

0.1,21,2 

0.3779 . 

0.3129 

0.2259 

0.1078 

-0 .103 

-0.375 

-0.87I: 

-1.0703 

6' ( x , 0 ) 

-O.63 

-0.627 

-0 .625 

-0 .62 

-0.612 

-0 .60 

-0.585 

-0.561, 

- 0 . 5 3 

-0.1,75 

-0 .39 

-0 .23 

-0 .16 

analysis shows that for a semi-infinite vertical plate, the solution is 
nonsimilar. Also, notice that the present analysis is valid ifm = 0 , and 
reduces to the case of constant wall temperature automatically, 
whereas the transformation given by Sparrow and Gregg gives no 
results for the constant wall temperature case. 

According to the transformation of equations (8), (17), and (27), 

£ = A(emx - Dim 

i5= 1 - J - K 

e(/j) = 4e" m x ( l -e~mx) 

and 

d((0)/d~0 = 4(2e~mx - 1) 

The nondimensional heat transfer parameter is given by: 

Nux/Gr j r
, / ' ' = -<?'(& 0){mxemx/(emx - l)\1/4/V2 

Comparisons in Fig. 6, for the case m = 1 and Prandtl number = 
0.7, show excellent agreement between the present results and those 
of the accurate difference-differential method. Also shown are results 
from the local similarity model and from Sparrow and Gregg's [7] 
similarity solution. 

Tw - T» = S in(x) 
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Fig. 5 Comparison of non-dimensional temperature gradient for sinusoidal Fig. 6 Comparison of nondimensional temperature gradient for exponential 
wall temperature variation variation in wall temperature 
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Fig. 7 Comparison of nondimensional wall temperatures with exponential 
variation in wall heat flux 

Exponentially Increasing Wall Heat Flux 
As a first example for prescribed wall heat flux case, let us consider 

the case of exponentially increasing wall heat flux, i.e., 

qw(x)/k = ex 

where x is the distance from the leading edge. Without loss of gener
ality, we take Cr = (gfS/iv2y/A = 1. 

Fig. 7 gives the results for the nondimensional wall temperature 
for Pr = 0.7 at several stations, as obtained by the present method, 
and by the difference differential method, and by local-similarity. 
Agreement between the present solution and the numerical solution 
is excellent. Also shown is the asymptotic similarity solution of 
Sparrow and Gregg [7]. 

Linear ly I n c r e a s i n g or D e c r e a s i n g Wall H e a t F l u x 

The wall heat flux is given by: 

q,Ax)/k= ( l ± x ) 

where x is the distance measured from the leading edge. Here again, 

1.70 
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we have taken Cj = 1. Comparisons for the linearly increasing flux 
case in Fig. 8 show that the local similarity does quite well. But the 
present solution is even better. For the linear decreasing flux case, 
comparisons in Fig. 9 show that the present solution does well up to 
about x = 0.5, whereas local similarity deviates considerably for x > 
0.3. Both lose accuracy as x —- 1. But it should be noted that nor
malization factor used for 0 (see equation (10)) exaggerates dis
crepancies when the heat flux is small. 

C o n c l u s i o n 
A method of determining the temperature, heat flux relations in 

laminar free convection along a nonisothermal vertical plate has been 
described. The basic feature of this new technique involves finding 

4.6 

4.2 

3.8 

3.4-

q 
x" 
CD 

® Presen t 

Numer ical 

— Local-similarity 

Fig. 8 Comparison of nondimensional wall temperature with linearly in
creasing wall heat flux 

0. .1 1 .3 .4 .5 .6 .7 
x 

Fig. 9 Comparison of nondimensional wall temperature with linearly de
creasing wall heat flux 
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a shifted va lue of (S, t h e t e m p e r a t u r e s imi lar i ty p a r a m e t e r , such t h a t 

t h e cor responding s imi lar i ty solut ion provides accura te p red ic t ions 

of hea t flux or surface t e m p e r a t u r e . F o u r examples have been given 

to d e m o n s t r a t e the effectiveness of the p r e s e n t t echn ique . 

Owing t o t h e exposi tory n a t u r e of th i s pape r , t h e appl ica t ions 

presen ted here in have deal t only wi th the free convection in the fluid 

adjacent to a h e a t t ransfer surface. B u t t h e resul ts ob ta ined here can 

also be used to s t u d y more complex s i tua t ions , such as coupled free 

convection conduction problems. In such cases the universal functions 

ob t a ined for t h e prescr ibed wall t e m p e r a t u r e case can be used in 

conjunct ion wi th a numer ica l i te ra t ive process t o m a t c h bo th t h e 

t e m p e r a t u r e a n d h e a t flux a t t h e wall interface. C o m p u t a t i o n a l ex

p e r i m e n t s deal ing wi th such p rob lems r e m a i n to be carr ied out . 
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Appendix 
Since accurate numerical solutions for laminar free convection along 

a nonisothermal flat plate do not seem to be available in the l i terature 

for comparison, a difference-differential solution suggested by S m i t h 

and Clut ter [19, 20] in their t r e a t m e n t of forced convection prob lems 

is developed in this Appendix . 

Both equa t ions (15) and (16) conta in first derivatives with respect 

to £. These can be approx ima ted by the classical Lagrangian m e t h o d 

in t e rms of values of t h e funct ions a t two or more po in t s , which need 

not be equal ly spaced. A t h r ee -po in t app rox ima t ion formula for de 

r ivat ive wi th respec t to £ is used in th i s repor t , excep t for t h e second 

po in t a long t h e s t ream-wise di rec t ion where a two-po in t formula is 

used. T h u s , a t s ta t ion n, equa t ions (15) and (16) become: 

/ „ ' " + (3 - 2~Mnfn" ~ 2 /„ ' 2 + en = 4£„[/„ ' ( « „ / „ ' - & , / „_ , ' 

+ W / / - 2 ' ) - fn" (ctnfn ~ f$nf„~l + y„f„-2)\ (Al ) 

1/Prtf„" + (3 - 2~0n)fn6n' - WM'On = 4? n | / „ ' (a„f l„ - / 8 , A - i 

+ -YnBn-2) ~ On'(anfn " ft,/„-l + y„f„-2)} (A2) 

where 

Cln = (2£„ - £ „ - , " fn_2)/[(£„ - L-l){£n ~ in-2)] 

Pn = tin ~ kn-2)IUn " £ n - l ) ( £ „ - I - £„- 2 ) ] 

y„ = tin ~ Zn-l)/[(kn ~ £„-2) (£ n -1 ~ l „ - 2 ) ] 

wi th b o u n d a r y condi t ions a t each s ta t ion given by: 

fntin, 0) = /„ ' ({„ , 0) = 0, 0„(£n ,O) = l or 0„'(£„, 0) = - 1 

/ n ' ( U » ) = 0, B„tin, » ) = 0 

W i t h solut ions a t s ta t ions n — 1 and n — 1 considered known, t h e 

prob lem is to find the solut ion a t s t a t ion n. A t each s t a t ion n, a 

s tandard shooting technique as described by Nachtshe im and Swigert 

[18] can be used to find /„"(£,„ 0) and0„ ' (£ ,„ 0). T h e solution proceeds 

downs t ream, s ta t ion by s ta t ion. Since the m e t h o d is of implici t type , 

the solut ion is always s table . 
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Application of a K-e Turbulence 
Model to Natural Convection From 
a Vertical Isothermal Surface 
A K-e turbulence model similar to that proposed by Jones and Launder is applied to the 
calculation of the turbulent natural conuectiue boundary layer on a vertical, isothermal 
surface. Conservation equations for the turbulent kinetic energy, dissipation rate of tur
bulent kinetic energy, and mean square temperature fluctuations are solved numerically 
along with the turbulent momentum and energy equations using the Spalding-Patankar 
boundary layer method. Various model constants and wall functions, and wall terms were 
tested. The results are compared with available experimental data and found to be in rea
sonable agreement. 

Introduction 

Turbulent natural convection from vertical heated surfaces is im
portant in many technological applications, including among others, 
heat dissipation from large radiators, heat losses to cryogenic tankage, 
and fire propagation. Despite the large number of applications, until 
recently this type of flow has received relatively little attention either 
experimentally or theoretically. Although analytical tools for pre
dicting transition and the subsequent flow have improved signifi
cantly in recent years, transition and turbulent modeling, particularly 
for buoyancy driven flows remains a poorly understood area of fluid 
mechanics. 

Several investigators have calculated such flows using integral 
methods including Eckert and Jackson [l],2 Bayley [2], and more 
recently, Kato, et al. [3]. Although the results of these calculations 
agree well with available experimental data with respect to the heat 
transfer, the assumed velocity and temperature profiles have been 
shown to be in error particularly the 1/7 power law profiles of Eckert 
and Jackson. (The solution of Kato does not assume profiles of ve
locity and temperature but assumes an eddy diffusivity distribution 
from which mean profiles of velocity and temperature are deducted.) 
More recently several investigators: Cebeci and Khattab [4], Mason 
and Seban [5], and Noto and Matsumoto [6] have obtained numerical 

1 Present address: Department of Mechanical Engineering, Washington State 
University, Pullman, Wash. 

2 Numbers in brackets designate References at end of paper. 
Contributed by The Heat Transfer Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS, and presented at the National Heat 
Transfer Conference, St. Louis, Mo., August 9-11,1976. Revised manuscript 
received by the Heat Transfer Division September 22, 1976. Paper No. 76-
HT-17. 

results by assuming an eddy diffusivity distribution analogous to that 
used in forced convection. Again the results of these studies agree 
quite well with available experimental data. Mason and Seban carry 
the calculation one step further by solving the equation for the kinetic 
energy of the turbulence and calculating the turbulent viscosity from 
the dimensionally correct combination of the kinetic energy and an 
algebraically determined mixing length. However, they did not include 
the effects of buoyancy on the turbulent kinetic energy. This flow has 
also been calculated by Nee and Yang [7] using the phenomenological 
turbulent theory of Nee and Kovasznay [8].3 

Experimental work in this area has been presented by Cheesewright 
[9], Warner and Arpaci [10], Lock and Trotter [11], Fujii [12], Vliet 
and Liu [13], Smith [14], as well as several others. The foregoing in
vestigators have presented a great deal of data on the heat transfer 
and mean velocity and temperature profiles, however relatively little 
data are available with regard to the turbulence structure of the flow 
or the mean velocity in the near wall viscous sublayer region which 
controls the heat transfer. The most extensive experimental study 
of the turbulent structure of such a flow is that presented by Smith 
[14]. Some comments on the turbulent intensity are made by Vliet 
and Liu, Cheesewright, and Lock and Trotter whereas Papailiou and 
Lykoudis [15] present experimental data on the intensity of tem
perature fluctuations in liquid mercury. Kutateladze, et al. [16] pre
sents some turbulent data for a similar flow in ethyl alcohol. 

The present study was undertaken to develop a turbulence model 
which can be used to calculate buoyancy driven wall boundary layers 
without an a priori assumption with regard to profiles of velocity, 
temperature and the eddy diffusivity. This resulted in a calculation 

3 We are indebted to a reviewer for pointing out this reference. 
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technique which removes some of the integral method assumptions 
and is more generally applicable to flows of this nature involving more 
complex geometries as well as reacting flows and recirculating flows 
where the methods discussed previously may not be suitable. 

The method employed in this study uses the Reynolds averaged 
equations of motion subject to a set of closure hypotheses suitable for 
accurate computation. Recent progress by Donaldson and Jones and 
Launder [17] with phenomenological turbulence models in forced 
flows indicates that this is a sensible approach. 

Due to its demonstrated success in calculating a wide variety of 
forced flows, the K-t model of Jones and Launder was selected as a 
starting point for application to buoyancy driven flows. Since the 
initiation of this study, work has been published by Taminini [18] and 
Rodi and Chen [19] demonstrating the ability of modified K-t models 
in calculating buoyant plumes. 

T h e T u r b u l e n c e Model 
Numerous authors have proposed closure models for turbulent 

flows in an attempt to accurately predict the turbulent shear stresses. 
Prandtl [20] and Kolmogorov [21] proposed that the turbulent vis
cosity should be proportional to the square root of the turbulent ki
netic energy and a length scale representative of the energy containing 
eddies. A transport equation for the turbulent kinetic energy can be 
derived from the Navier-Stokes equations through Reynolds de
composition. Various authors have developed transport equations 
for different variables in order to determine the length scale. In the 
K-t models characterized by that of Jones and Launder [17] the length 
scale is taken to be the dissipation length scale (t = K3I2/L). Thus, the 
turbulent viscosity can be written 

Mr = CftpK2/t (1) 

where C„ is a constant of proportionality.4 The assumptions of high 
Reynolds number where the flow tends toward isotropy is essential 
to the development of equation (1). 

In order to account for the contribution of buoyancy to the turbu
lent kinetic energy and dissipation rate, a third transport equation 
for the mean square temperature fluctuations must be included in 
the model. Thus, at high Reynolds numbers where the dissipation 
process is essentially isotropic and the effects of molecular viscosity 
are negligible, the transport equations for the three turbulence pa
rameters of interest can be written in the boundary layer approxi
mation as follows: 

4 Rodi [22] discusses conditions under which C^ can be considered con
stant. 

U3K VdK 
p h p 

dx dy 
Udt Vdt 
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dx dy 
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K \dy 

pt 

+ C,Pg0~(ut) (3) 

Udq Vdq 
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An appropriate model for the correlation between temperature 
fluctuations and vertical velocity fluctuations must be determined 
in order to close the system of equations. Following the arguments 
presented by Launder and Spalding [23] it is proposed that 

ut = CiiqK)1'2 (5) 

Equations (2)-(5) along with the equations of continuity, momentum 
in the Boussinesq approximation, and energy form a closed system 
of equations, describing a turbulent buoyancy driven flow at high 
turbulent Reynolds number. The <r's represent turbulent Prandtl 
numbers for the parameters in question and the C's are model "con
stants" preceding terms which are inexact in that their derivation 
relies heavily on dimensional arguments. This model for the contri
bution of buoyancy to the turbulent kinetic energy has also been 
proposed by Taminini in calculating a turbulent diffusion flame. 

The model constants used in the calculations are given in Table 1. 
Numerical values for C„, C\, C2, ax, and a, are those recommended 
by Jones and Launder [17]. By assuming similar contributions from 
buoyancy and gradient production terms, C3 can be shown to equal 
C[. The value for Ct was chosen based upon the experimental data 
of Smith. The constants Cql, C(/2, and aq are those used by Taminini 
in turbulent diffusion studies. 

In order to predict accurately the behavior of the flow near the wall, 
particularly in the viscous sublayer where the turbulent Reynolds 
number is small, the effects of molecular viscosity and nonisotropic 
dissipation must be taken into account. The former can be easily 
added by its inclusion in the diffusive terms in all of the transport 
equations. The wall functions and wall terms which are added to ac
count for the nonisotropic behavior near the walls are those of Jones 
and Launder [17] with one exception. They suggest adding an addi
tional wall term to the equation for the dissipation rate (circled term 
in equation (7)) to give better agreement with the experimental results 
for the turbulent kinetic energy. However, in the present calculations, 
this term was dropped because it cannot be justified from a physical 
standpoint in buoyant flows. The resulting equations depict the 
complete turbulence model. 

^ N o m e n c l a t u r e . 

Cp = specific heat 
C\, C2, Cs, C\, C,, i, C,,2, C„ = empirical model 

constants 
F\, F2, F-t, F„ = empirical wall functions 
Gr = local Grashof number 
g = acceleration of gravity 
K = kinetic energy of turbulence (T.K.E.) 
k = thermal conductivity 
Nux = local Nusselt number 
Rer = turbulent Reynolds number 
q = mean squared temperature fluctua

tions 
T = mean temperature 
t = fluctuating temperature 
U = mean velocity in vertical direction 

u = fluctuating velocity in vertical direc
tion 

Ub = buoyant velocity [(gflx At)1/2] 
u* = friction velocity ( V T „ , / P ) 
u+ = U/u* 
V = mean horizontal velocity 
Vu = entrainment velocity 
u = fluctuating horizontal velocity 
x = vertical coordinate 
y - horizontal coordinate 
y+ = dimensionless horizontal coordinate 

(v) 
= thermal diffusivity 

0 = coefficient of thermal expansion 
S = boundary layer thickness 
t = dissipation rate of T.K.E. 

/y 
V • laminar similarity variable ( - V~Gr ) 

M = molecular viscosity 
UT — turbulent viscosity 
v = kinematic viscosity 
/) = density 
cr = Prandtl number 
"K, ff<i <J7', oq = turbulent Prandtl number 
\f/ = stream function 
\pE = stream function at the outer edge of 

boundary layer 
ii> = dimensionless stream function (I/'/I/'E) 
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Table 1 Model constants for high Reynolds number turbulence model 

C„ C, C 2 C 3 CA Cni Cn7 OK Op o, 

1 . 4 4 1 .92 1 .44 0 .5 

Energy: 

0 . 0 9 
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2 . 8 
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<7 

1.3 .9 
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pK2 

(8) 

(9) 

T h e wall functions Ft, F%, and F,, which are functions of the tu rbu len t 

Reynolds n u m b e r were chosen by Jones and L a u n d e r by applying the 

model to wel l -documented t u rbu l en t forced flow. T h e assigned forms 

of J o n e s and L a u n d e r are used in t h e p r e s e n t calculat ion for these 

th ree funct ions, i.e., 

F, = 1.0 

F2 = 1.0 - 0.3 exp ( - R e T
2 ) 

FM = exp [ -2 .5 / (1 + R e T / 5 0 ) ] 

F-A = 1.0 (10) 

where the tu rbulence Reynolds n u m b e r is defined as, Re-r = pK2/pe. 

T h e funct ion F-j was n o t eva lua ted by Jones and L a u n d e r since t h e y 

did no t deal wi th b u o y a n t flows a n d in th i s s t udy was given a value 

of uni ty ; however, fur ther work m a y reveal t h a t its o p t i m u m value is 

otherwise . 

T h e wall t e r m appea r ing in equa t ion (6) is again t h a t p roposed by 

Jones and L a u n d e r . I t s necessi ty arises from the need to assign a 

boundary condit ion to t a t the wall. Th i s boundary condit ion was set 

equa l to zero for lack of an exact p red ic t ion . T h u s , c, in equa t ion (7) 

can be considered the isotropic pa r t of the dissipat ion r a the r t h a n the 

tota l dissipation. W i t h this a s sumpt ion it can be shown t h a t the wall 

t e r m appea r ing in equa t ion (6) will give t h e correct behavior of t h e 

t u r b u l e n t k inet ic energy in t h e nea r wall region. A similar a r g u m e n t 

can be used to derive the wall te rm shown in equat ion (8) for the mean 

squa red t e m p e r a t u r e fluctuations. Hoffman [24] has shown t h a t t h e 

wall t e rm in equa t ion (6) can be wr i t t en a l t e rna te ly as 

(11) 
2pM 

y dy 

to again get the correct behavior of K near the wall. Whether equat ion 

(11) or the t e r m shown in equat ion (6) is used makes little difference 

in the final resul ts . 

E q u a t i o n s (6)-(8) a long wi th 

Cont inu i ty : 

dU dV 
— + — = 0 
dx dy 

(12) 

M o m e n t u m : 

UdU VdU d 
•+p- . . . \(p + pr)^-]+PglS(T-Ta) (13) 

dx dy <9y L dy J 

UdT VdT 

dx <9y 
1JL 
pdy \a ai'l 3yJ 

(14) 

were numer ica l ly eva lua ted wi th several different values of or- For 

p lane je ts and p lumes ar = 0.5 has been shown to give resul t s which 

agree well wi th expe r imen t , t hus , one m i g h t assume t h a t th i s is an 

appropr i a t e value, par t icular ly outs ide of the velocity m a x i m u m . T h e 

expe r imen ta l d a t a of S m i t h [14] and the works of Blom a n d Pa i a n d 

Whi te l aw discussed in [23] indica te t h a t o r should be s o m e w h a t 

higher inside t h e velocity m a x i m u m . Var ious cons t an t values for ar 

were examined b u t the choice which gave bes t ag reemen t wi th ex

p e r i m e n t in t h e p r e s e n t case was 

ar = 2.5-2.0(y/<5) (15) 

T h e value of 2.5 a t the wall represents a linear extrapolation of Smi th ' s 

da ta and equat ion (15) results in the desired value of 0.5 near the outer 

edge of t h e b o u n d a r y layer. 

N u m e r i c a l M e t h o d 

T h e Pa tankar -Spa ld ing [25] finite difference procedure was chosen 

for the numerica l solution of the sys tem of equat ions p resen ted in the 

previous sect ion because of t h e n u m e r o u s advan tages it offers in t h e 

calculat ion of b o u n d a r y layer flows. T h e Von Mises t r ans fo rma t ion 

is app l ied to t h e five pa r t i a l differential equa t ions replacing t h e y-

coord ina te wi th a normal ized s t r e a m funct ion, oi = ipl^E, where fe 

is t h e value of t h e s t r eam funct ion a t t h e ou te r edge of t h e b o u n d a r y 

layer. T h e equa t ions t h e n t ake t h e form 

— + L — 
dx \pv da) 

_d_ 

du 

/ + m £ i / f * l + s (16) 
\ (T<|,/ yE~ du) J 

where S r ep re sen t s t h e source or s ink t e r m s for the var iable in ques 

tion $. T h e implici t difference equat ions are formed using an integral 

a p p r o a c h wi th t h e except ion of t h e x der ivat ives which were formed 

using a differential approach . Th i s modification to the technique was 

m a d e in order to el iminate forward s tep size dependence of the results 

when a variable grid spacing is used in the cross-stream direction. T h e 

p r imary advantage of this solut ion t echn ique is t h a t it allows the grid 

sys tem to e x p a n d wi th t h e b o u n d a r y layer and t h e resul t ing t r id i -

agonal sys tem can be inver ted qu i t e rap id ly . 

T h e basic p r o g r a m was tes ted by calculat ing l aminar n a t u r a l con

vect ion from a vert ical i so thermal surface. T h i s calculat ion was per

formed utilizing 41 cross-stream grid points and a forward s tep of 0.05 

t imes t h e b o u n d a r y layer th ickness . U n d e r these condi t ions t h e 

b o u n d a r y layer was ca lcula ted over the range of Grashof n u m b e r s 

from 6.5 X 103 to 1.0 X 10CJ with less t h a n 20 s of C P U t ime on the CDC 

6400. T h e hea t t ransfer resul ts compared with the similari ty solut ion 

to less t h a n 1 percen t . However n e a r t h e outer edge of t h e b o u n d a r y 

layer, profiles of velocity and t e m p e r a t u r e t e n d to zero slighter faster 

t han they do in the similarity solution. Satisfactory results for laminar, 

bounda ry layers could probably be a t t a ined even faster by increasing 

the forward s tep size and decreasing the number of cross-stream grids. 

Al though th i s was no t p u r s u e d t h e speed and accuracy of t h e nu

merical ca lcula t ion is indeed impressive. 

P rev ious users of t h e K-e t u rbu lence mode l , as well as o ther two 

equa t ion t u r bu l ence mode ls , have init ial ized the calculat ion in the 

fully t u r b u l e n t region a n d proceeded u p s t r e a m to the region of in

te res t . T h i s a p p r o a c h na tu ra l ly requi res t h e avai labi l i ty of exper i 

m e n t a l d a t a for b o t h m e a n and t u r b u l e n t quan t i t i e s of in teres t . In 

the case of n a t u r a l convect ion from a vert ical surface expe r imen ta l 

d a t a on t u r bu l ence quan t i t i e s is a lmos t complete ly lacking in t h e 

l i terature. In addit ion, exper imental results for the mean velocity and 

t e m p e r a t u r e profiles in t h e viscous sublayer are ex t remely sparse . 

I t was found t h a t t h e calcula t ion can be in i t ia ted in the l aminar 

region by in t roduc ing a small a m o u n t of t u r b u l e n t k inet ic energy a t 

a po in t which crea tes a numer i ca l t r ans i t ion a t t h e Grashof n u m b e r 

corresponding t o t h e t rans i t ion which is observed experimental ly . At 

a Grashof n u m b e r of 4.0 X 108 t h e t u r b u l e n t calculation was ini t iated 

by the introduction of a small a m o u n t of tu rbu len t kinetic energy and 
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Fig. 1 Local Nusselt number versus Grashof number 

Mason and Seba 
Noto and Ma 
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x 

Present Analysis 

Fig. 2 Velocity profiles 

a dissipation rate which approximately balanced the production and 
dissipation of turbulent kinetic energy at both the outer and inner 
edge of the boundary layer. This resulted in a numerical transition 
near Gr = 1.0-2.0 X 109 which is where the transition is observed to 
take place in heat transfer experiments. 

The wall terms and wall functions act to damp the turbulent kinetic 
energy in the viscous sublayer where the molecular viscosity domi
nates the turbulent transport. In forced flows, the importance of these 
wall terms decrease as one moves toward the free stream values. 
However, in buoyant flows, the maximum velocity occurs within the 
boundary layer and these wall terms will also influence the damping 
at the outer edge of the boundary layer. Thus in order to overcome 
this difficulty the wall functions and wall terms were only applied out 
to the velocity maximum. 

The calculations presented in this report utilized 40 cross-stream 
grids in the laminar and transition regions and 80 in the fully turbu
lent region. In order to check the adequacy of this number, runs were 
made with 40 grids in the turbulent region with no appreciable change 
in the results. The grid network was not evenly distributed across the 
boundary layer. Roughly half of the grid points were inside of the 
velocity maximum where steep gradients of all of the flow variables 
occur. In addition, it was essential to maintain several grids within 
the viscous sublayer in order to obtain satisfactory results. Forward 
step sizes of 4 or 5 percent of the total boundary layer thickness proved 
to be effective; larger forward steps led to decreased accuracy. 

The entrainment rate at the outer edge of the boundary layer is 
calculated from the momentum equation in the form of equation (16) 
which can be rewritten 

PVE 
w loco L 

(M + VT) 
PU am 
\J/E2 dw J 

g/3(T-T«,) 3U}dU 

U — — <17) dx I du> 

Equation (17) is solved at the second grid point from the outer edge. 
At this point the dU/dx term and the buoyancy term are negligible 
which simplifies the computation. 

Results and Discussion 
The heat transfer results are presented in Fig. 1 and compared with 

available experimental results and empirical correlations. (All cal
culations were performed for Pr = 0.72.) The results tend to fall be
tween the 2/5 power law of Eckert and Jackson's integral analysis and 
the 1/3 power law of Bayley at higher Grashof numbers. The experi
mental data of Cheesewright, and Fujii fits the Eckert and Jackson 
correlation fairly closely whereas the experimental results of Warner 
and Arpaci (not shown on the figure) are best fit with Bayley's cor
relation. The model tends to slightly over predict the heat transfer 
if a constant value of or = 0.9 is used but agrees well when or is given 
by equation (15). The model cannot be expected to predict transition, 
thus the results between Grashof numbers of 109 and 1010 should not 
be taken as accurate. They merely provide a means of leading the 
model to the fully turbulent results which are of interest. 

Turbulent velocity and temperature profiles are shown in Figs. 2 
and 3. These are plotted versus i], the laminar similarity parameter, 
not to infer that this is the correct similarity parameter for turbulent 
natural convection, but merely as a matter of convenience since pre
vious results have been presented in this manner. The velocity is 
normalized with the buoyant velocity, Ub = Vgfix AT. The velocity 
profiles calculated using the K-t model agree more closely with the 
experimental data than do previous numerical results in that the 
velocity maximum is less pronounced and the profile beyond the 
maximum is more linear. However, the predicted velocity is still 
slightly higher than that determined experimentally. This could be 
a result of equation (17) overpredicting the entrainment rate. If the 
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Fig. 3 Temperature profiles 

velocity profiles are plotted as l / / t /m a x they agree very closely with 
experimental data of Cheesewright and Vliet and Liu. The calculated 
temperature profiles shown in Fig. 3 agree quite closely with available 
experimental results. 

The three turbulent quantities predicted by the K-e model are 
shown in Fig. 4 for two Grashof numbers. The calculated kinetic en
ergy and mean squared temperature fluctuations are compared with 
the experimental data of Smith in Figs. 5 and 6. The experimental 
data indicate a maximum turbulent intensity slightly less than 0.3. 
The experiments of Vliet and Liu in water indicates similar results 
whereas Kutateladze's data for ethyl alcohol at a Rayleigh number 
of 108 gives a maximum intensity of 0.36. 

For both the turbulent kinetic energy and the temperature fluc
tuations, the model results agree closely with experiments in the outer 
region. However, in both cases the model fails to predict the sharp 
measured peak occurring inside the velocity maximum. This can be 
attributed to a combination of the inadequacy of the wall functions 
and wall terms and the assumption that the dissipation rate is zero 
at the wall. However, the experimental data in this range is ques
tionable due to the experimental difficulties in measuring intensities 
near the wall. The results of Bill [26] in water demonstrate a smooth 
curve without the near wall peak in agreement with the K- e model. 

The near wall results deserve some attention since this is where the 
heat flux is controlled and also probably the most questionable part 

of the model since it is here that the calculated turbulent quantities 
deviate from experiments. An asymptotic solution to the boundary 
layer equations for natural convection near the wall [27], results in 
the following velocity and temperature distributions: 

u--
/dU\ 
\ ay / y=o 

g/3AT i 

2, 2 

(-) 
6v 

y3 + Uty* + . 

T-Tw= (—) y + T4y" + .. 
\dy/ y=0 

(18) 

(19) 

The first appearance of turbulence quantities being in the coefficients 
of y4 (Ui and T4). Equation (19) is the same as that for forced con
vection. However, the asymptotic velocity profile does not contain 
the quadratic and cubic terms in y in the case of forced convection 
indicating a linear velocity profile in the viscous sublayer. However, 
it can be shown that in air at moderate AT's, the quadratic and cubic 
terms are small in comparison to the first term, thus reducing equation 
(18) to basically the forced convection form. From the asymptotic 
solution it can also be shown that the turbulent viscosity should go 
as y 3 near the wall. 

Experimental and calculated near wall velocity profiles are shown 
in dimensionless form in Fig. 7 along with equation (18). The near wall 
results (y+ < 5), both experimental and calculated, appear to agree 
closely with the forced convection form (u+ = y+) which falls slightly 
below the curve of equation (18). Since the wall terms used were de
veloped for forced flows and not optimized for buoyant flows, this 

Fig. 4 Normalized turbulence quantities 
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Fig. 6 Comparison of predicted and experimental I2 

small discrepancy in the near wall region is reassuring that the mod
eling approach is sound. There does seem to be a logarithmic region 
between the viscous sublayer and the velocity maximum, however, 
the model results indicate that the slope of the logarithmic region is 
a function of Grashof number. In the narrow range of Grashof num
bers observed by Cheesewright, the velocity profile varies little with 
Grashof number although there is a large amount of scatter in the data 
close to the wall. A prediction of u* from Cheesewright's data is also 
difficult, thus, the experimental points plotted in Fig. 7 are ques
tionable. The model does result in the linear temperature distribution 
predicted by equation (19) and also calculates a turbulent viscosity 
which goes as y3 in the viscous sublayer. 

The development of the boundary layer thickness and maxima in 
the profiles of velocity, turbulent kinetic energy, and mean squared 
temperature fluctuations as the flow progresses downstream can be 
simply related to the Grashof number, Gr,. Once the numerical cal
culation has surpassed the transition region (Gr.v ~ 1010) all four flow 
variables are found to follow simple power laws. The velocity maxi
mum increases by a 1/7 power law indicating that the boundary layer 
grows linearly with x. The maxima in the turbulent kinetic energy and 
mean squared temperature fluctuations follow Gr x

, / 4 and GrA-~I/10, 
respectively. The experimental work of Papailiou and Lykoudis in 
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liquid mercury indicated a decrease in intensity of temperature 
fluctuation closely approximated by Grv~1/4. 

A sensitivity study was carried out in order to determine the effect 
of the various model constants on the calculated results. The coeffi
cients Ci, Ca, C„, an, a, were not included since they have been op
timized against experiment for forced flows and used with a reason
able degree of success by several previous investigators. The result 
of varying the constants Ca, C4, Cq\, C(/2, and aq by ±20 percent are 
shown in Table 2. It can be seen that the effect of C3 on the model 
results is quite strong leading in some cases to amplified effects (>20' 
percent). It has an appreciable effect on all of the parameters exam
ined in the study. The constant C4 can be varied by ±20 percent with 
a less than 5 percent effect on all of the parameters except the maxi
mum turbulent kinetic energy and the maximum dissipation rate. It 

Table 2 Results of Sensitivity Study—numbers represent percent 
change of parameter in question. Upper left: Gr„ = 1.0 X 1011; lower 
right: Gr, = 1.0 X 1012. 

CONSTANT TESTED 

C 3 = 1.15 (-207.) 

C 3 = 1 .73 (+207.) 

C = . 4 (-207.) 

C 4 = . 6 (+207.) 

C q 2 = 1 .36 (-207.) 

C - 2 . 0 4 (+207.) 

C j • 2 . 2 4 (-207.) 

C t - 3 . 3 6 (+207.) 

0 - . 6 8 (-207.) 

a = 1 . 0 2 (+207.) 

CTT = . 9 

" l " - 5 

CTT - 1 .75 - 1 .25 ( y / 6 ) 

o T - 2 . 5 - 2 . 5 ( y / 6 ) 

max 

^-~~^ - 5 . 3 

+ 5 . 7 ^ 
— - ^ + 4 . 1 

+ 1 . 1 , 
, - - " • " + . 4 

sx^T 
_^^T 
, - ^ 1 - . 4 

- - " ^ + . 4 

- - — ^ 0 . 0 

C U ) , ^ ^ ^ ^ 

- ^ ^ + . 4 

, , - - " + 9 . 0 

+ 8 . 6 ^ — - — " " ^ 
^ - " ^ + 1 1 . 8 

-—-^~~~~-1.2 

+ 2 . 3 . , 
. - — - " ^ + 2 . 9 
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t l M ) - " - " " " ^ 
^ ^ + 2 8 . 3 

- - - ^ ' - 1 7 . 3 

- - " " " - ^ - 7 . 6 

, - - + 8 . 0 

+ 4 . 6 ^ - ^ ' ^ ' ^ 
^ ^ ^ + 6 . 1 

- 3 . 5 ^ - - ' ^ ' ^ 

- 3 . 9 - — - " ' " ' ' ^ 
, - — - 4 . 2 

+3.2^——"""'" '^ 
„ ^ " + 3 . 8 

+ 1 . 8 . — - ' ' 
, ^ ^ ^ + 2 . 9 

- 1 . 4 , - " " ^ 
- ^ - " ' ^ 2 . 1 
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- 1 . 8 ^ ^ ^ - ^ " ^ 

^ - ^ " ^ - 1 . 9 

- 3 . 2 ^ — ' 
^ ~ ^ ^ - -8 
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^ - " ^ + . 1 5 
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- 2 0 . 6 . ^ — " " ' ' ^ 
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^ — - ^ " ^ + 2 1 . 3 
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^ — ^ ^ 5 1 . 1 
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ux 

+ 2 0 . 2 ^ - - ' 
^ - ^ + 2 3 . 6 
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- 1 4 . 7 
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X 
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+2J^- " 
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should be no ted t h a t C4 c a n n o t be cons idered a universal c o n s t a n t 

for all free convection-type flows, since in the general case where stable 

s t ra t i f icat ion m a y exis t ut or C4 m u s t be p e r m i t t e d t o change sign. 

T h e constants Cqi and Cq2 have a significant effect only on q since the 

con t r ibu t ion of buoyancy t o t h e t u r b u l e n t k inet ic energy is smal l in 

compar i son to t h e m e a n shear (gradient p roduc t ion) . T h e effects of 

the t u r b u l e n t P r a n d t l n u m b e r , aq, a re qu i t e small . 

I t can be seen from tes t n u m b e r s 11-14 (Table 2) t h a t the effect of 

the t u rbu l en t P r a n d t l n u m b e r , or, is qu i te s t rong wi th respect t o t h e 

resul t ing Nusse l t n u m b e r a n d t h e m e a n squa red t e m p e r a t u r e fluc

tua t ions . T h e cases t es ted utilizing a cons tan t value of or , bo th resul t 

in extremely high Nussel t n u m b e r s as well as low levels of t empera tu re 

f luc tuat ions . T e s t n u m b e r 14 yielded resu l t s qu i t e s imilar to those 

calculated using t h e P r a n d t l n u m b e r var ia t ion obta ined th rough t h e 

use of equa t ions (18) a n d (19). 

In one add i t iona l t e s t t h e wall funct ion f$ was changed from un i ty 

to a form equal to t h a t used for ft- T h e results indicated no significant 

effect. 

Whi le t i m e has n o t al lowed us to examine t h e pros and cons of t h e 

p r e s e n t a p p r o a c h wi th t h a t of Nee a n d Y a n k [7], it is in te res t ing to 

note despi te t h e differences in the model ing of t h e various tu rbulence 

processes , b o t h closure mode l lead t o ident ical behaviors of t h e ve

locity, t empera tu re and tu rbu len t viscosity variations in the sublayer. 

I t would prove in teres t ing to examine and compare the predict ion of 

the tu rbu len t s t ruc ture quant i t ies of both approaches b u t th is has no t 

been done a t t h i s t ime . 

Conclusions 
T h e K-e t u rbu l ence mode l for wall b o u n d a r y layers p roposed by 

Jones a n d L a u n d e r a n d modified to incorpora te t h e effects of 

buoyancy can be used with a reasonable degree of accuracy to calculate 

t u r b u l e n t buoyancy dr iven wall b o u n d a r y layers. T h i s adds to t h e 

confidence in t h e universa l i ty of t h e empir ica l cons t an t s and lends 

some suppor t to the selection of wall functions and wall t e rms of Jones 

a n d L a u n d e r wi th t h e except ion of t h e wall t e r m d i sca rded in t h e 

p r e s e n t s tudy . T h e mode l s l ight ly overpred ic t s t h e velocity in t h e 

outer port ion of the boundary layer and does not precisely predict the 

peaks in t h e t u r b u l e n t k inet ic energy and t u r b u l e n t f luc tua t ions in 

t h e nea r wall region. However t h e resul t s compare to a reasonable 

degree of accuracy wi th t h e expe r imen ta l resu l t s avai lable in t h e lit

e r a tu re . F u r t h e r r e f inements in t h e mode l awai t t h e avai labi l i ty of 

more exper imenta l d a t a for this type of flow, par t icular ly with regard 

t o t u rbu lence q u a n t i t i e s and m e a n velocity and t e m p e r a t u r e d is t r i 

bu t ions in t h e viscous sublayer . 
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Free Convection Heat Transfer 
Across Inclined Honeycomb Panels 
Experimentally obtained Nusselt number-Rayleigh number plots are presented for free 
convective heat transfer across honeycomb panels, heated from below, and inclined with 
respect to the horizontal at angles of 0, 30, 45, 60, and 90 deg. Aspect ratios of honeycomb 
cells of 2, 3, 4, and 5 are included; the fluid contained in the cells is air. Substantial sup
pression of free convection is observed when compared with an air layer of the same depth 
but not containing a honeycomb. Heat transfer associated with the base flow is found to 
be of only moderate importance at angles near horizontal, but of considerable conse
quence for angles near the vertical. The honeycomb walls used were partly transparent 
to thermal radiation, and a strong radiative coupling is indicated. A correlation equation 
for the Nusselt number, valid over part of the experimental range, is presented. 

Introduction 

Although considerable attention has been given to free convective 
heat transfer across honeycomb panels in the horizontal position, 
[1-7],' very little information exists for predicting free convective heat 
transfer across inclined panels. Notwithstanding the studies which 
have touched on the inclined case, [8-11], there is insufficient pub
lished information at the present time to permit the rational design 
of honeycombs for particular applications. The situation has been 
recently reviewed in [7]. 

An important proposed use of honeycombs is for the purpose of 
suppressing the free convective heat transfer which would otherwise 
occur in an inclined layer of fluid, heated from below. The insertion 
of a honeycomb into this fluid layer is known, in the case of a hori
zontal layer, to completely suppress convection currents for all Ray
leigh numbers, Ra, less than a critical value, denoted by Rac. In the 
case of an inclined layer, it is known that a finite convective motion, 
called the base flow, exists for any Ra greater than zero. This base flow, 
which is driven by the component of gravity along the heated 
bounding surface of the honeycomb panel, is expected to make only 
a modest contribution to the heat transfer, at least until very high 
Rayleigh numbers are reached. However, the actual magnitude of the 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
May 20,1976. 

heat transfer associated with the base flow, and the Rayleigh number 
at which it becomes significant, are at the present time largely un
known. Also largely unknown is the critical Rayleigh number at which 
this base flow becomes unstable. This latter instability is expected 
to be due to the "top-heavy" nature of the fluid layer and hence is 
expected to be driven by the component of gravity normal to the 
heated bounding surface. 

The present paper presents an extensive set of measurements on 
this problem, for a square-celled, diathermous honeycomb. Experi
mental plots of Nusselt versus-Rayleigh number are presented for 
angles of inclination, 8, measured from horizontal ranging from 0 to 
90 deg, and for aspect ratios ranging from 2 to 5. The fluid used is air 
and in all cases (except at 6 = 90 deg), heating is from the lower face 
of the honeycomb. 

The major engineering application of this study is to the design of 
a class of flat plate solar collectors in which a honeycomb is placed 
between the absorber plate and the glass cover in order to suppress 
free convective and radiative heat losses, as described for example in 
[20]. In this application there exists a short-wave (solar) radiant input 
to the honeycomb, which is not simulated in the present experiments. 
However, since the honeycomb must be made highly nonabsorbing 
to solar radiation (in order that the collector function efficiently), the 
effect of the short-wave input on the free convective phenomena are 
expected to be slight. 

Description of Experiment 
All experiments were performed on the University of Waterloo 

Natural Convection Apparatus which is fully described elsewhere [3, 
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12, 13]. The procedure and data reduction was also the same as de
scribed in these papers. Full details of the complete experiment are 
given in [14]. The measured heat transfer across the honeycomb in
cludes contributions from conduction along the honeycomb walls and 
radiation, as well as the free convection heat transfer. In order to 
separate out the free convective component, it was necessary to sub
tract away the sum of the wall conduction and radiative components. 
This sum was determined for a particular honeycomb from mea
surements at subcritical pressures with 8 = 0, as discussed in [3]. As 
also discussed in [3], an error analysis indicated that the maximum 
expected error in the apparatus for the Nusselt number is about 3 
percent, and in the Rayleigh number, 2 percent. All properties (both 
honeycomb and air) were evaluated at the arithmetic mean of the 
plate temperatures. Since AT was kept small (AT » 5 K), temperature 
variation of properties is not considered an important factor in the 
experiments. The mean temperature, Tm, was kept at 305 ± 10 K. 

Sketched in Fig. 1, the honeycombs were constructed from 
0.038-mm (0.0015-in.) thick polyethylene film, by heat-sealing preslit 
strips at periodic join-lines. The width of the join-lines was kept small 
(approximately 0.25 mm), thereby ensuring nearly square cell corners. 
Table 1 gives the actual dimensions of the honeycombs used. As in 
[3], polyethylene was chosen for the honeycomb material because, in 
thin films, it has a very high transmittance to long-wave (3-30 Mm) 
thermal radiation. This high transmittance, along with the low 
emissivity, of the polished copper plates which form the bounding 
surfaces of the honeycomb in the test apparatus, was originally ex
pected to insure a decoupling of the thermal radiation mode of heat 
transfer across the honeycomb, from the free convective mode. 
However, as will be discussed later in the paper, a strong radiative 
coupling was still observed. Hence a full specification of the radiant 
parameters is necessary. 

The spectral binormal radiative transmittance of the polyethylene 
film was measured on a spectro-photometer and, assuming no scat
tering and an index of refraction for polyethylene of 1.52, the total 
normal transmittance T, reflectance p, and absorptance, a, for a 
black-body source at Tm = 305 K were calculated. The result was: T 
= 0.819, p = 0.067, and a = 0.114. The total normal emissivity at 305 
K is consequently t = 0.114 and the corresponding hemispheric value 
was calculated to be 0.130. Most of the absorption occurred in two 
bands, one at 6.9 ^m, the other at 14.2 nm. The copper plate emissivity 
was (p = 0.065. The thermal conductivity of polyethylene walls was 
taken at 0.54 W/m K, with an uncertainty of about ± 10 percent 
[21]. 

Since the temperature difference across the honeycomb was kept 
small (~ 5 K), it is permissible to assume that the radiative interaction 
can be linearized. Assuming this, and assuming also that a grey radiant 

HEAT SEALED AT CORNERS 

-POLYETHYLENE STRIPS 

Fig. 1 Figure showing dimensions and method of fabricating square-celled 
honeycomb 

analysis applies, the Nusselt number can be shown to be a function 
of the following dimensionless groups: 

Nu = Nu(Ra, Pr, 0, A, C, H, N, p, e, tp) (1) 

(In fact, p need not be listed, as will be demonstrated later.) Certain 
of the variables were kept constant for all experimental runs. These 
included the Prandtl number (Pr = 0.71), as well as p, t, and tp, whose 
values are given in the foregoing. Other variables were kept "quasi-
constant:" thus except for one honeycomb, C was kept at 166 ± 25 
percent; H was kept at 6 X 10 - 5 ± 25 percent; and N was kept at 15.6 
± 25 percent. Since it was anticipated that rather large variations in 
these quantities would be required in order to have a significant effect 
on Nu, these variables were considered constant. Consequently, for 
the present experiment: 

Nu = Nu(Ra, 6, A) (2) 

The primary purpose of the experiment was to examine the effect of 
Ra, 6, and A on Nu, and the range of values of these variables was 
consequently made large. The ranges were: for A, A = 2, 3, 4, and 5; 
for 6,6 = 0, 30, 45, 60, and 90 deg; and for Ra, ~ 10;! < Ra < ~ 10G. In 
all, six square-celled, polyethylene honeycombs were tested; their 

.Nomenclature-

A = apsect ratio of honeycomb cell; A = 
L/D 

C = wall admittance group: C = k[L/(kwb) 
C* = revised wall admittance group, which 

includes radiative effect, defined by 
equation (4) 

D = honeycomb cell width, see Fig. 1, for 
square cell; distance across hexagonal flats 
for hexagonal honeycomb 

g = acceleration of gravity 
H = cell coupling group; H = kfb/kwL 
kf = thermal conductivity of fluid 
ku, = thermal conductivity of honeycomb 

wall 
L = height of honeycomb panel, see Fig. 1 
N = radiation group; N = 4aTm

sL/kf 
Nu = Nusselt number; Nu = qL/(kfAT) 
Pr = Prandtl number of fluid; Pr = c/A 

(/ = free convective component of heat 
transfer across honeycomb panel 

Ra = Rayleigh number; Ra = g/3ATL3/(i>\) 
Ra/; = modified Rayleigh number; Raz) = 

gfJATDVLvX = RaM 4 

AT = temperature difference across honey
comb; AT = Ti - T2 

T], T-2 = temperature of lower and upper 
bounding faces of honeycomb, respec
tively 

T„, = mean absolute temperature of honey
comb walls; T„, = (Tx + T2)/2 

t = thickness of honeycomb wall (see Fig. 
1) 

a = total absorptivity of single film of hon
eycomb wall to radiation from a black body 
at Tm 

IS = coefficient of volumetric expansion of 
air 

<5 = half-thickness of honeycomb wall, S = 
t/2 

t = total emissivity of single film of honey
comb wall, at T,„ 

t,, = total emissivity of plates bounding 
honeycomb on top and bottom 

X = thermal diffusivity of fluid 
/> = kinematic viscosity of fluid 
6 = angle of inclination of honeyconib face 

from horizontal 
p = total reflectivity of single film of honey

comb wall to radiation from a black body 
at T„, 

a = Stefan-Boltzmann constant 
T = total transmittance of single film of 

honeycomb wall to radiation from a black 
body at Tm. 
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Table 1 Properties of six polyethylene honeycombs tested 

Honeycomb 
t 

1 

2 

3 

4 

5 

6 

L 
Inch 

3 .000 
( 7 . 6 2 ) 

1.875 
(A .76) 

2 . 5 0 0 
( 6 . 3 5 ) 

3 . 1 2 5 
( 7 . 9 4 ) 

2 . 0 0 0 
( 5 . 0 8 ) 

1.250 
( 3 . 1 8 ) 

D 
inch 

1.000 
( 2 . 5 4 ) 

0 .625 
( 1 . 5 9 ) 

0 .625 
( 1 . 5 9 ) 

0 .625 
( 1 . 5 9 ) 

1.000 
( 2 . 5 4 ) 

0 .625 
( 1 . 5 9 ) 

A 

3 

3 

4 

5 

2 

2 

Average 

G 

200 

125 

167 

208 

133 

83 

153 

HxlO5 

1.25 

2 . 0 0 

1.50 

1.200 

1.900 

3 .000 

N 

18.99 

11.87 

15 .82 

1 9 . 7 8 

12 .66 

7 . 9 1 

C* 

1 3 . 1 

19 .0 

2 5 . 3 

3 1 . 7 

8 .7 

12 .7 

18 .4 

varipus dimensions and pertinent dimensionless groups are given in 
Table 1. An additional honeycomb made from polycarbonate and 
having hexagonal cells was also tested. It will be described more 
completely later in the paper, as will the results applying to it. 

Results 
The measured Nusselt number-Rayleigh number plots are shown 

in Fig. 2. Also shown on these graphs, for comparison, are the Nusselt 
number curves which would apply for free convective heat transfer 

a HONEYCOMB * i 

o HONEYCOMB * 2 

-U-U 

A HONEYCOMB * I 

o HONEYCOMB * 2 

.l°&akJ^24 

I 1 I I 

8 - 6 0 " 

I I 1 U 

RAYLEIGH NUMBER,Ra 

Fig. 3. A check on dimensional similarity and the importance of variations 
in the groups C, H, and N—these two honeycombs have the same aspect ratio 
A, but are of different actual dimensions (see Table 1) 
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across slots of very small aspect ratio, but containing no honeycomb 
[13, 15]. Thus the difference between the data and the curves is an 
indication of the effectiveness of the honeycomb in suppressing free 
convection. 

The data for 8 = 0 deg are exactly as have been observed earlier [1, 
3]—i.e., a Nusselt number of unity, indicating complete convective 
suppression, until a critical Rayleigh number is reached, after which 
there is a dramatic rise in Nu with Ra. The inclined data show the 
same general trendy but with an initial gradual rise in Nusselt number, 
making it difficult to define a critical Rayleigh number for the inclined 
case. A similar trend was observed by Sun [8] for rectangular-celled 
honeycombs. As discussed in [8] and updated in [7], this region of 
initial gradual rise is almost certainly associated with the base flow 
which, as discussed earlier, occurs for any Ra > 0 (provided 0 ^ 0) and 
is driven by the component of gravity along the bounding surface (i.e., 
g sin 6). The more dramatic rise2 in Nusselt number in the inclined 
case, noted at values of Ra slightly greater than the corresponding Rac 

for 8 = 0, is most probably due to the top-heavy instability, driven by 
the component of gravity normal to the bounding surfaces, g cos 6. 
At 6 = 90 deg there appears to be no instability of this kind and it is 
therefore felt that the observed heat transfer is due entirely to base 
flow. This is supported by the close agreement noted in [16] between 
the present data and the predictions of a numerical solution for the 
base flow. 

It is interesting to note that the results in Fig. 2 show that at some 
Rayleigh number, and at low aspect ratios, the effect of the honey
comb can be to increase the heat transfer over that which would occur 
with no honeycomb present. This result is felt to be due to the hon
eycomb breaking up the thick, insulative boundary layers which would 
otherwise form along the heated and cooled faces. Such an effect was 
also found in [16], for I) = 90 deg, based on a numerical solution of the 
governing equations. 

As a check on dynamic similarity, and to test the hypothesis that, 
over the ranges of C, H, and N covered in the experiments, the effect 
of these variables is negligible, Fig. 3 was plotted. This figures shows 
a comparison of the measured Nusselt numbers for two different 

I04 105 I06 

RAYLEIGH NUMBER, Ra 
Fig. 2 Experimental results for various aspect ratios and angles of inclination 
in the form of Nusselt number-Rayleigh number plots 

2 This rise is perhaps most easily observed in the case 0 ~ 30 deg, -4=5 (see 
arrow). 

88 / FEBRUARY 1977 Transactions of the ASME 

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



3 
Z 

rr 
i i i 
CD 
i 
- 1 
2: 

UJ 
in 
in 
3 
<£ 

4 

3 

2 

1 

3 

2 

1 

3 

2 

1 

4 

3 

•? 

1 

b 

4 

3 

2 

1 
1 

-

-

32 

e = 9 0 ° 

A A • 2 
. A = 3 
0 A " 4 
« A « 5 

1 " 1 

9 = 60° 

1 .° i 

e = 45° 

r . i 1 

6 = 30° 

t o l . 

9 = 0 ° 

1 „ l 

° l 

•°l 

°l 

o| 

* t 

0° . 

fl° , A 
jO°?. A 

A A A A ^ A A V I A 1 1 1 1 1 

rf 

0 * . ' 

f ^ r fTH ' ' " 

.?• 

• o ^ A 
* a 

. • * V< i o S < A 

b-o^nv^wi^"4 a 1 1 i i i 

* 
* • 

D * ^ 

o ° * x a 

t> 1 q ^ ^ ^ ^ i 1 1 1 1 

x 
X 0 . 

: * • & 

I,. H ~ i » J r l « u 1 I t r . . J ^ i 1 1 1 1 
I03" 

! 1 1 

1 1 1 

1 1 1 

a 

I 1 1 

A 

1 1 

IC 

3 
•z. 

** cc UJ 
CD 

2 
Z) 2 

t -
_ j 
UJ 
CO 
CO 

4 

4. 

3. 

Z. 

6. 
5. 
4. 

3. 

2. 

« 5. 

4. 

4. 

1. 
6. 
•> 

4. 

3. 

? 

1. 

5. 

4. 

3. 

2. 

MODIFIED RAYLEIGH NUMBER, RaD 

Fig. 4 Experimental results plotted in terms of RaD rather than Ra 

honeycombs (Honeycombs 1 and 2, Table 1), both having the same 
values of A (namely 3), but of different dimensions and consequently, 
slightly different values of C, H, and N. The close agreement should 
indicate the insensitivity to these variables. Close agreement was also 
found when Honeycombs Nos. 3 and 4, which are both of aspect ratio 
2, were compared. . 

The data of Fig. 2 are plotted in slightly different form in Fig. 4, 
where a modified Rayleigh number, Rao, defined by 

gfiATD4 

RaD = — = Ra/A4 

vah 

has been used. This group has been put forward previously by Ed
wards [17,19], for large aspect ratio stability studies at 6 = 0, and by 
Hart [18] for large aspect ratio base flow studies at 6 = 90 deg. Con
sequently, for large aspect ratios this group alone was anticipated to 
characterize the heat transfer, for a fixed angle 6, at least for small and 
moderate Rayleigh number, and Fig. 3 shows that within the bounds 
of experimental error, this is in fact the case provided A > 4 and 8 ^ 
0. 

Correlation Equation for Heat Transfer 
Simple correlation equations for the function Nu = Nu(Ra, 6, A) 

covering the full set of experimental data, have been sought by the 
authors but without success. However, a single correlation equation 
covering the important subrange: 

S = 9 0 " 

• HEXAGONAL HONEYCOMB 
• SQUARE - CELLED HONEYCOMB 

.f rrrtiTn ni 1 1 1 1 1 . 1 i n 

9=60° 

I ' . ' 1 ° ^ ° I . I I I 11 , I . I . I . I . I I I I 
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e=3o° 
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icr ioD 10' 
RAYLEIGH NUMBER, Ra 

Fig. 5 Comparison of two honeycombs, one square-celled, the other hex
agonal, compared at the same hydraulic diameter (A = 5)—the hexagonal-
celled honeycomb also has a higher wall emissivity 

has been found. The equation is: 

Nu = 1 + 0.89 cos (e - -) ( ^—) 
V 3 / \2420A4/ 

, 2.88-1.64sinfl 
(3) 

Ra 
—- s 6000; 30 deg : 
A4 £ 90 deg; A g 4 

This equation fits all the data in its range to within ± 7% percent. 
(Provided differences of the order of 20 percent are acceptable, it also 
holds holds for A = 3.) For the range 0 < 6 < 30, deg linear interpo
lation between equation (3) and the correlation equation for 6 = 0 deg 
given in (3) is recommended. Although strictly tested only for A = 4 
and 5, the equation is expected to be valid for all A > 4, since, as dis
cussed previously, (Ra/A4) is expected to characterize the heat 
transfer for large A. For A < 3, direct use of Fig. 2 is recommended 
for determining heat transfer. 

Hexagonal Honeycomb 
Honeycombs considered for flat plate solar collectors are likely to 

be different from those of the present study in that: (i) they may not 
be square-celled, and (ii) the wall material will likely be thicker and 
have higher emissivity. To examine the effect of these two changes, 
another honeycomb was studied on the apparatus. Details of this 
honeycomb are as follows: cell shape-hexagonal; wall material— 
polycarbonate (Lexan, General Electric Reg. T.M.); average wall 
thickness = 0.01 cm; distance across flats-D = 0.95 cm; aspect ratio 
= L/D = 5; wall emissivity = 0.39; C = 94, H = 10.7 X 10"5, N = 11.9, 
C* = 16.1. Fig. 5 shows the measured Nusselt numbers for this hon-
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Fig. 6 Comparison of the critical Rayleigh numbers at B = 0, predicted by 
Catton [6], and those measured in the present study and in [3] 

eycomb. Also plotted for comparison are the results for a square-celled 
polyethylene honeycomb of the same aspect ratio (Honeycomb No. 
5). The broad behavior of the Nusselt number is the same for both 
honeycombs; interestingly, the hexagonal honeycomb permits less 
heat transfer at 0 = 0 and more for 8 > 0. Disagreement is largest at 
Rayleigh numbers well past critical; it does not usually exceed 20 
percent but is well outside the bounds of experimental error. It should 
be noted that the two honeycombs are compared for the same hy
draulic diameter. 

Critical Rayleigh Number at 6 = 0 
The critical Rayleigh numbers exhibited in Fig. 2 for 8 = 0 can be 

compared with the various theories which apply to this stability 
problem, and the present section is devoted to this comparison. It 
should be noted that this comparison is of importance not only for the 
scholarly concern of testing the validity of the theories, but also in 
underlining how sensitive the free convective heat transfer data in 
Fig. 2 are to the radiative effects, a point of some engineering signif
icance. 

The individual honeycomb cells are assumed to be thermally iso
lated from each other so that an adiabatic plane can be assumed to 
be drawn at the half thickness line of each of the partitions of the 
honeycomb. The stability of the fluid contained in such a square cell 
has been analyzed by Catton [6], and his theoretical predictions for 
Rac (A, C) are shown as the solid lines in Fig. 6. This theory does not 
account for radiation but according to Sun and Edwards [5], the effect 
of thermal radiation can be accounted for by using in these plots an 
effective value of C, namely C*, given by 

C* 
• + • 

N 

4-tA2 
(4) 

(The use of this formula is subject to a number of assumptions which 
will be discussed later.) 

Values of C and C* for the various honeycombs are given in Table 
1 and the measured values Rac for these honeycombs are plotted in 

Fig. 6. The average value of C for all honeycombs is about 150; that 
for C* is about 18. It is seen that if radiation effects were ignored the 
present data points would be expected to fall approximately along 
the theoretical line for C = 150; however, they fall about 50 percent 
above this line. If, on the other hand, the value of C is modified to 
include radiation effects, then the data points should fall along a line 
of about C = 18, and they fall only about 15 percent above that line. 
In view of the various assumptions involved in the use of equation (4) 
(which are discussed shortly), the latter agreement must be considered 
to be quite good. As previously pointed out by Sun and Edwards [19], 
the engineering significance of the higher critical Rayleigh numbers 
experienced due to the radiative coupling is to enhance the suppres
sion. Although this radiant effect has only been analyzed for 8 = 0 deg, 
it is likely to have an equally strong influence on the free convective 
heat transfer observed at the other angles in Fig. 2. 

Although not part of the present study, the critical Rayleigh 
numbers of [3] are also plotted in Fig. 6 for further comparison with 
the theory. These honeycombs were fabricated from 0.004-in. thick 
polyethylene film, using opaque pressure sensitive tape. Allowing for 
the presence of the tape, the value of C for these honeycombs is cal
culated to be approximately 100, while that for C*, approximately 3. 
They are, therefore, in excellent agreement with the theory if the ef
fect of radiation is included. In [3] it was argued that the difference 
between the experimental points and the theory for C = 100 was not 
due to radiation but due to conductive interaction between cells, as 
represented by the group H. In view of the agreement just alluded to, 
it now seems that the radiative effect is the more likely explanation. 
However, in our opinion it is likely that the group H has an important 
effect on free convection in the inclined position due to the effects 
of the base flow. 

As mentioned previously, the use of equation (4) in the present 
experiments involves a number of assumptions and these should be 
discussed. Strictly, the equation applies to an infinite (A = <») circular 
cylinder with opaque grey diffuse side walls. The honeycombs used 
in the present experiments are square-celled, of finite height, and have 
nonopaque, nongrey sidewalls. To account for the effect of finite A, 
an alternate theory contained in [8] must be used. This theory, which 
is less exact than that of Catton, gives about the same agreement with 
the present experiments as that shown in Fig. 6. Although the ex
perimental honeycombs are not opaque, they can, for all practical 
purposes, be treated as opaque, as can be seen from the following 
argument. Consider a hypothetical isolated cell having sidewalls of 
one half thickness of those of the experiment; let the sidewalls be 
immediately bounded on the outside of the cell with a perfect reflector 
of thermal radiation which reflects in a perfectly specular manner. 
Due to the symmetry of the honeycomb about any sidewall, this hy
pothetical cell behaves radiantly and thermally in a manner identical 
to the actual honeycomb cell. Therefore the honeycomb cell can be 
considered to be opaque, with the same emissivity as that of the actual 
film, but with specular rather than diffusely reflecting sidewalls. (Note 
that this also implies that p can be dropped from the list of variables 
in equation (1), since the reflectance and transmittance are lumped 
together and the effective reflectance is 1 — e.) Since equation (4) 
applies to diffuse rather than specular sidewalls, in applying it to the 
present problem one would expect differences of the order of those 
applying to diffuse vis-a-vis specular radiant analysis. In a long pas
sage, such as a honeycomb cell, quite substantial differences of this 
type are found, with a specular passage generally transferring more 
heat than an opaque passage of the same emissivity. Consequently, 
a stronger radiant effect on free convection would be expected in the 
present instance, and this is exactly what is required to make theory • 
and experiment agree in Fig. 6. 

Conclusions 
1 Free convection heat transfer across an air layer can be effec

tively suppressed by a thin-walled square or hexagonal-celled hon
eycomb, even in the inclined position. (Effective suppression for an 
inclined liquid layer with rectangular-celled honeycombs has been 
previously reported by Sun [8].) 
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2 Fig. 2, along with correlation equation (3), can be used for de

signing thin-walled, partly-transparent square-celled or hexagonal-

celled honeycombs suitable for use in inclined solar collectors. Dis

crepancies in Nusselt number of the order of 20 per cent may be ex

pected, since it is not likely that all dimensionless groups will be ex

actly matched, nor will the cell shape be completely matched. Further 

research is required to establish completely the effect of these pa

rameters. 

3 Even though a honeycomb material may be largely transparent 

(r > 0.8) to thermal radiation, a coupling of the radiative and free 

convective modes may still be evident. Stability theories accounting 

for radiant coupling, but based upon opaque sidewalls can be used 

with reasonable accuracy to predict critical Rayleigh numbers for 

partly transparent sidewalls; however, for better results, the theories 

should be based upon specularly reflecting sidewalls, rather than 

diffuse. 
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A Criterion of Onset of Free 
Convection in a Horizontal Melted 
Water Layer With Free Surface 
The problem considered in this paper is the determination of the Rayleigh number mark
ing the onset of free convection in a horizontal melted layer of ice heated from above under 
uniform radiant heat flux. In this analysis, linear perturbation techniques are used to de
rive a sixth-order differential equation subject to hydrodynamic and thermal boundary 
conditions. The series-solution method is utilized to obtain an eigenvalue equation for 
the case where the lower surface (ice surface) is kept at 0°C and the upper free surface is 
subjected to the general thermal conditions. An experimental determination of the onset 
of free convection, when the heat transfer mode changes from conduction to convection, 
is obtained from the fact that the temperature distribution in a melted water layer starts 
to deviate from its linear profile. At the same time, a peculiar variational inflection of the 
water-surface temperature occurs. From the present investigation, it can be demonstrated 
both analytically and experimentally that the critical Rayleigh number Rac in a horizon
tal melted water layer with a density inversion is dependent on the free water-surface 
temperature T2 for T2 < 8°C, while Rac for T2^8°C is independent of T2. 

Introduction 

In a horizontal melted layer of ice heated from above under constant 
wall temperature, the free convection can take place if the Rayleigh 
number exceeds its critical value resulting from a peculiar charac
teristic of water having its density inversion at 4°C. It is well recog
nized that the convection has a considerable effect on the melting rate 
of ice. 

Boger and Westwater [1]] investigated the effect of free convection 
on melting and indicated that the critical Rayleigh number, corre
sponding to the onset of free convection in the aforementioned layer, 
was about 1700. Yen and Galea [2] treated the same problem and 
showed that the critical Rayleigh number for water was not a single 
value as for common fluids having monotonic relationship of density, 
but varied with the temperature of the upper rigid surface. Sun, et 
al. [3] presented analytical results for the effect of density inversion 
of water on hydrodynamic instability in a melted layer with a rigid 
or free upper surface (without surface tension). He pointed out that 
their experimental values of the critical Rayleigh number for the 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by The Heat Transfer Division 
March 3,1976. 

former were in good agreement with the results predicted analytically. 
Recently, Tankin and Farhadieh [4] studied the role of free convection 
on the formation of ice by using a Mach-Zehnder interferometer and 
found that the critical Rayleigh number for the case of freezing from 
below was about 480. Seki, et al. [5] presented their experimental 
investigation pertaining to the aforementioned system such as melting 
ice heated from above and reported that the critical Rayleigh number 
was about 500 for higher temperature of rigid surface than about 9°C. 
Katto and Iwanaga [6] demonstrated that the critical Rayleigh 
number predicted experimentally by them and Seki, et al. [5] agreed 
well with that given by a modification of the analytical results ob
tained by Sun, et al. [3]. 

On the other hand, a somewhat more complicated situation arises 
if a horizontal melted layer of ice is heated from above under constant 
radiant heat flux. Such a case is schematically illustrated in Pig. 1. Fig. 
1(a) shows a typical phenomenon in a horizontal melted layer whose 
upper free-surface temperature is higher than 4°C. In such a case, the 
fluid density in the layer increases at first downward from the free 
surface and then decreases. The fluid layer, therefore, consists of a 
potentially stable and a potentially unstable layers. As will be seen 
in Fig. 1(6), if the free-surface temperature is in the range of 0-4°C, 
the entire liquid layer is potentially unstable due to the buoyancy force 
existing in the layer. In the case of Fig. 1(a), the upper boundary ef
fects, that is, the hydrodynamic boundary conditions including surface 
tension and the thermal boundary condition are only felt indirectly 
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Fig. 1 Illustration of the effect of maximum density in a melted water 
layer 

by the potentially unstable layer. And if the thickness of the stable 
layer decreases relative to that of the unstable one, it is obvious that 
these effects would become more significant. This then corresponds 
to an increased effect of surface boundary conditions on the onset of 
free convection in the unstable layer. But, in the case of Fig. 1(b), these 
effects are felt directly by the potentially unstable liquid layer. Thus, 
the problem of the onset of free convection in such a system may be 
somewhat complicated. 

Sugawara, et al. [7] presented an experimental investigation per
taining to the aforementioned system and reported that the critical 
Rayleigh number Rat. for the case of Fig. 1(a) was about 500 for T-2 
ranging from 9 to 65°C; that is, the thickness of the potentially stable 
liquid layer is relatively large. Recently, Sparrow, et al. [15] predicted 
analytically the onset of convective motion in a horizontal melted 
liquid layer formed from below by using a nonlinear rest-state tem
perature distribution in the layer. They pointed out that the variation 
of the critical Rayleigh number was distinctly affected by the con
vective boundary condition (i.e., the value of Biot number) rather than 
the rest-state temperature distribution, while the effect of Stefan 
number on the critical Rayleigh number was small. Also they recasted 
their stability results in terms of parameters which was a priori 
prescribable for the physical system. 

The purpose of this study is to determine the critical Rayleigh 
number marking the onset of free convection in a horizontal melted 
layer of ice heated from above. This problem, which incorporates both 
a maximum density at 4°C and upper free surface, differs distinctly 
from the other instability problems. Therefore, the discussions in the 
present investigation are mainly focused on correlating the critical 
Rayleigh number with the effects of the density inversion and the 
surface tension of the free surface (i.e., Marangoni number). In the 
present analysis, linear perturbation techniques are utilized to derive 
a sixth-order differential equation subject to the hydrodynamic and 
the thermal boundary conditions. Experimental determinations of 
the critical Rayleigh number Ra,. are also made and compared with 

the analytical results predicted for the free-surface temperature 
ranged from 1.5 to 12°C. 

Fundamental Equations and Boundary Conditions 
Perturbation Equations. The system of coordinates is shown 

in Fig. 2. Distance from the lower rigid surface is denoted by z'; z' = 
0 corresponds to the lower rigid surface and z' = H corresponds to the 
upper free surface. The coordinate axes x' and y' lie in a horizontal 
plane and the horizontal extent of the water layer is assumed to be 
sufficiently great so that the .edge effects may be neglected. Under 
steady-state quiescent conditions, the temperature distribution in 
the water layer may be considered to be linear as shown in Fig. 2. 

Perturbation equations can be obtained in the similar manner to 
that by Sparrow, et al. [15] as following. Introducing the dimensionless 
quantities (x, y,z) = (x', y', z')/H, (u, v, w) = (u', v', w')H/v, ft = ft''l(T<i 
— T\), t = t'n/H2 and Prandtl number Pr = vh, the linearized equa
tions for perturbation components are obtained in the following di
mensionless forms after eliminating pressure terms. 

P r d i 
V2K -Gr(l + b\z + &2z

2)Vi2ft + V4tu 

dO dT0 
— + Pr w — - = 
dt dz 

V20 

(1) 

(2) 

where Vi2 = (d2/dx2 + d2/dy2) and a density-temperature relationship 
within the temperature ranges concerned is assumed to be 

P = pm(l - 7 i (T - Tm)2 - T2{T - Tm)3\ 

The Grashof number Gr, coefficients 5i and &2 are defined as 

(3) 

_gWHT2~T]) | 3 7 2 | 
Gr - ; 2,y,(lm - I,) 1 (lm -TO) (4) 

v- I 271 J 

T; - Ti ( 3 7 2 1 / f 37.; ] 

lm ~ 1 \ I 71 I' I 27! ) 

&., = -
T, - T, \> 372 ,„ {T.,-TiyiTi 

\T„, - TJ 2 7 i 

372 
(Tm-Ti)\l--^(T„,-T,) 

I I 27! 

(5) 

It should be noted that equations (1) and (2) are obtained under an 
assumption that all of physical properties except p related to body 
force are independent of temperature. Furthermore, equation (4) is 
derived from the fact that pm/po can be stated as unity in the range 
of temperature concerned, where po is density at a reference tem
perature and pm density at 4°C. 

One considers an arbitrary disturbance in terms of normal modes, 
supposing the perturbations w and 0 have the following forms 

w - W(z) exp|i(a.v:c + ayy) + <j>t\ 

0 = 9(z) exp\i(axx + avy) + <j>t\ 

(6) 

(7) 

•.Nomenclature. 

a = wave number 
Bi = Biot number, aH/\ 
C = constant 
D = operator 
g = acceleration of gravity 
Gr = Grashof number, defined in equation 

(4) 
h = depth of potentially unstable layer 
H = depth of melted water layer 
Ma = Marangoni number, ao^(T-z — T\)HI 

(PVK) 

p' = perturbation pressure 
po = static pressure 
P = pressure 

Pr = Prandtl number, V/K 
Ra = Rayleigh number, Pr-Gr 
Ra,. = critical Rayleigh number 
Ra(. = modified critical Rayleigh number, 

defined in equations (16) and (17) 
t = nondimensional time 
t' = time 
T = temperature 
To = steady-state temperature 
T\ = temperature of lower surface 
T'i = temperature of upper free surface 
Tic = temperature of upper free surface at 

critical time 
T„, = temperature at maximum density, 

4°C 

u', u', w' = velocity components 
u, v, w = nondimensional velocity compo

nents 
x', y', z' = coordinates 
x, y, z = nondimensional coordinates 
« = heat transfer coefficient, defined in 

equation (14) 
fi = coefficient of thermal expansion (abso

lute value) 
ft' = perturbation temperature 
K = thermal diffusivity 
A = thermal conductivity 
v = kinematic viscosity 
p = density 
aa = surface tension of water at 0°C 
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Fig. 2 The system of coordinates 

where a = (ax
2 + ay

2)1/2 is the wave number of the disturbance and 
4> is a constant. Equations (1) and (2) now become 

\(D2 -a2)2- <t>(D2 - a2)/Pr}W = - G r ( l + SlZ + 82z
2)a2e (8) 

|(£>2 - a2) - 0)9 = Pr(dr 0 /d2) lV (9) 

where the operator D denotes d/dz. Considering the temperature 
profile in steady state to be linear, equations (8) and (9) can be com
bined together to yield, 

[(D2 - a2)2 - (0/Pr)(D2 - a2)}\(D2 - a2) - 0)0 

= - R a ( l + 512 + 52z2)a2e (10) 

where Ra = Pr-Gr. It has been shown by Pellew and Southwell [8] that 
the threshold of instability is marked by 0 = 0. The thus-reduced form 
of equation (10) is an ordinary differential equation for the pertur
bation temperature 9. 

Boundary Conditions. The lower bounding surface of the water 
layer is assumed to be a rigid perfect conductor because the ice layer 
is kept at 0°C. On the surface, all the velocity components vanish 
identically. Moreover, the surface temperature would be unperturbed 
by any flow or temperature disturbance in the liquid layer. Therefore, 
one can easily obtain the following conditions for 9 after Sparrow, et 
al. [15]. 

9 = 0, £>29 = 0 a n d D f D 2 - a 2 ) 9 = 0 (11) 

On the other hand, the conditions of the upper free surface become 
somewhat complicated. It can be pointed out after Kobayashi [10] that 
the appropriate conditions at the upper free surface taking into ac
count the effect of the surface tension on normal stress condition 
are 

w' = 0, ti{dw'/dx'+ du'/dz') =-ao^dT/dx'] 

and ii(dv'/dz' + dw'/dy') = —ag^dT/dy'l 

where OQ is the surface tension of water at 0°C and <I> is the coefficient 
in the a — T relation expanded to the first order in powers of T. Since 
there have been many discussions so far by Sparrow, et al. [9], Ko
bayashi [10], and Nield [11] about the general thermal boundary 
conditions, the detailed procedure will not be repeated here. For the 
present system, the conditions on 0 may be finally taken as 

(D2-a2)Q = Q, D2(D2-a2)Q = - M a a 2 9 

and DO + BiO = 0 (13) 

where Ma = <ro*(T2 — T\)H/(PVK) is the Marangoni number and Bi 
= aH/X the Biot number, where a is the heat transfer coefficient. For 
the present system the heat balance at the free surface yields 

dT\ 
\—\ =q + a\T„-T\H (14) 

where T„ is environmental temperature, q is heat flux aside from 
convection, e.g., radiative heat flux reaching the surface, and X denotes 
the thermal conductivity of water. Therefore, it might be expected 
that the value of Biot number (= aH/X) ranges from 0 to »> in the 
present study. 

1 0
2 i 1 , , , 1 1 1 , 

1 2 3 4 5 6 7 8 9 10 
T2 (°c) 

Fig. 3 Critical Rayleigh number 

Solution of the Perturbation Equation 
Method of Solution. Solution of equation (10) must be subjected 

to the boundary conditions (11) and (13). In view of the complexity 
of the equations (11) and (13) involving higher derivatives of 9, a 
numerical technique originally developed by Sparrow, et al. [9] is 
employed. A general solution of equation (10) with 0 = 0 may be 
constructed in power series of z, whose constants are to be determined 
from the boundary conditions. Numerical computations to find the 
critical Rayleigh number Rac are carried out with the aid of the 
FACOM 230-75 Digital Computer at the Computer Center of Hok
kaido University. 

Numerical Results and Discussions. For the present model as 
Tj = 0°C, the coefficients d\ and S2 in equation (5) can be rewritten 
as 

«i = - T 2 ( l - C)/4 a n d a 2 = - ( T 2 / 4 ) 2 C (15) 

where C = 3y2/2y,{Tm - Ti)/\l - 3y2/2yv(Tm - T,)|. Therefore, Si 
and 52 can be determined as each function of T% utilizing a set of 71 
and 72 after Yen [13]; 71 = 0.793953 X 10-S°C-2 , 72 = -0.655908 X 
10~7°C_:'. Thus, the numerical calculation could be carried out using 
the aforementioned method of solution. 

In Fig. 3, the predicted Rayleigh numbers marking the onset of free 
convection are presented graphically in a form of Rac. versus T-> for 
Ma = 0. The previous result (dotted line) by Sun, et al. [5] is shown 
along with the present results. In this figure, there are two solid lines; 
the one for Bi = 0 corresponds to a fixed heat flux and the other for 
Bi = co to a fixed temperature at the free surface. Detailed calculated 
values for these results are listed in Table 1. On the first inspection 
of this figure, it will be seen that for a given Bi, Rac increases mono-
tonically with increasing T2, but its sensitivity to Bi varies for a given 
T2. Furthermore, as can be seen in Fig. 3, the predicted curves of Rat 

for Bi = 0 and Bi = °° intersect each other at about T2 = 6.2°C. One 
can find a similar result to the aforementioned one in the prediction 
of Rac by Sun, et al. [3], which has not physically been understood in 
the present time. 

Sparrow, et al. [9] investigated the effects of the thermal boundary 
conditions at the surface on the onset of free convection for common 
fluids and found that the critical Rayleigh number was greatest under 
the condition of fixed free-surface temperature and decreases 
monotonically as the condition of fixed heat flux is approached. In 
the present system of fluid with density inversion, the effect of Bi on 
Rac is indicated through the plotted results of Rac/(Rac)Bi=o versus 
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Table 1 Numerical values ot the critical Rayleigh numbers 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2.091 

2.100 

2.115 

2.114 

2.222 

2.582 

3.571 

4.171 

4.592 

5.087 

791.970 

966.713 

1234.006 

1691.229 

2632.157 

5221.343 

11365.792 

19664.021 

30897.616 

46772.996 

T2°C 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

a 

2.684 

2.687 

2.692 

2.703 

2.732 

2.830 

3.282 

4.065 

4.595 

5.091 

Rac 

1280.742 

1526.506 

1881.140 

2434.750 

3406.985 

5450.224 

10473.549 

19303.566 

30930.386 

46770.041 

Bi for various value of T% for the case of Ma = 0. As will be seen in Fig. 
4, it is clear that the effect of thermal boundary condition is greatest 
under the condition of fixed free-surface temperature and smallest 
under the condition of fixed heat flux. But the sensitivity to Bi is 
considerably varied depending on T2, that is, it decreases with in
creasing T-i- This may be due to the fact that the upper boundary ef
fect becomes less significant as the thickness of stable layer in
creases. 

Pearson [11], Nield [12], Kobayashi [10], and Smith [14] studied 
the effect of the surface tension on the onset of free convection and 
reported that the surface tension motivated the onset of instability, 
so that the critical Rayleigh number decreased with increasing effect 
of surface tension. Moreover, Nield [12] and Kobayashi [10] concluded 
that this effect depended considerably on the thermal boundary 
conditions and was greatest for Bi = 0, while vanishing for Bi = 00. Fig. 
5 indicates the aforementioned effect on the present system under 
consideration through the plotting of predicted results of Rac /(Rac) -
Ma=o versus Ma for various values of Bi for the case of T2 = 4°C. As 
can be seen in this figure, it should be noted that the effect of Ma on 
Rac is opposite to that predicted by previous investigators [12] ,2 [10]. 
This discrepancy may be understood by the following fact. Under the 
present physical system with free convection, which is caused by the 

2 Nield [12] indicated a possibility that the critical Rayleigh number increased 
due to the negative Marangoni number, which was applicable to a layer of liquid 
adhering to a ceiling which was cooler than the air below, or to a liquid with 
negative coefficient of volume expansion cooled from below. 
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Fig. 5 Rac/(Ra,; )MS=O versus Ma in the case of T2 = 4°C. 

density inversion in the melted water layer where the temperature 
of the free surface (T2) is higher than that of the bottom surface (T\ 
= 0), the direction of the surface tension is opposite to that of con-
vective motion at the upper free surface. On the other hand, in the 
previous investigations with free convection, which is caused by a 
monotonic density-temperature relationship in a liquid layer where 
To < T\, the direction of surface tension is the same as that of con-
vective motion at the upper free surface. Furthermore, the effect of 
thermal boundary condition at the free surface on the onset of free 
convection for a given Ma is greatest for Bi = 0 and smallest for Bi = 
0°, which is very close to the results for common fluids. Rac/(Rac)Ma=o 
reaches about 3.67 for Ma = 10000 in the case of Bi = 0. 

The dependence of Rat./(Rac)Ma=o on Ma is demonstrated in Fig. 
6 for particular values of T2 for the case of Bi = 0. It will be seen that 
Rac/(Rac)Ma=o increases monotonically with increasing Ma and is 
most sensitive to Ma in the range of 100-1000. However, there is a 
marked difference in the effect of Ma on the onset of free convection 
for varying T2. For 71

2 > 4CC, the thickness of the potentially stable 
layer in the melted water layer increases as T2 increases. Therefore, 
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Fig. 7 A vertical cross-sectional schematic view of the experimental ap
paratus 

it may be understood that the thermal boundary condition of the free 
surface becomes less significant as To increases, which results in the 
decreased effect of Ma on the onset of free convection. Thus, of in
terest is the fact that the effect of Marangoni number Ma on the onset 
of free convection can be considerably evaluated even in the range of 
T-i > 4°C, as will be seen in Fig. 6. This behavior may be due to the 
fact that the upward motion of free convection in the unstable layer 
exceeds the 4°C isotherm, that is, the upward current penetrates the 
4°C isotherm and stretches for a considerable distance into the upper 
stable layer as pointed out by [4], 

Experiments and Procedures 
The experimental procedures are described in detail elsewhere [7], 

A vertical cross-sectional schematic view of the experimental appa
ratus is shown in Fig. 7. The testing ice is surrounded by two con
centric, square partition walls, 150 X 150 mm and 220 X 220 mm. The 
walls of the concentric partition wall are made of lucite plate. The 
50-mm annulus of ice between the testing ice and the inner partition 
wall and the 35-mm annulus of ice between the inner and the outer 
partition wall are each utilized as guard region for minimizing heat 
exchange with surroundings. Insulating material, styrofoam of 50 mm 
in thickness surrounding the outside of the test section, insure that 
the heat flow in the melted layer is kept in one-dimensional and 
downward throughout the run. The 19 infrared lamps of 100V-375W 
as heat sources are so arranged to radiate uniformly onto the surface 
of the testing ice, to maintain the condition of uniform heat flux at 
the free surface of melted water layer. The radiation heat fluxes are 
calibrated by using a radiation thermometer prior to the run. A 
thermocouple probe, the frame of which consisted of two separated 
bamboo arms of about 0.3 mm in diameter, is used as a measuring 
instrument of the temperature distribution in the melted water layer. 
A C-C thermocouple, 0.05 mm in diameter with 20-mm length, is 
stretched horizontally by the help of both edges of the bamboo arms. 
Thus, it may be expected that this minimizes heat loss from the 
thermocouples. Moreover, this probe is connected to a traversing 
instrument with a precision dial indicator. 

During each run, the thermocouple-probe is inserted into the 
melted water layer near the upper free surface. To obtain the tem
perature distribution the probe is moved slowly down to measure the 
temperature of every desired water depth after marking the tem
perature of the water surface. A relation between temperature and 
depth in the melted water layer could be thus obtained at the same 
time. Bubble-free, homogeneous ice from the distilled water is pre
pared for the melting experiment and kept uniformly at 0°C in a 
controlled cold room before running. 

The criterion of the onset of free convection in the melted layer, 
which corresponds to the critical Rayleigh number, is experimentally 
determined during melting of ice. Fig. 8 shows a typical experimental 

Fig. 8 Temperature-distribution change in a melted layer and temperature 
change at the free surface with time proceeding 

result of temperature-distribution change in the layer and that of the 
temperature change at the free surface with time proceeding. The 
thickness of the melted water layer thus increases with time pro
ceeding, therefore, it is not constant in all of the runs. Furthermore, 
strictly speaking, the state of heat transfer in the layer may not be in 
steady state..However, it is clear from the figure that the temperature 
distribution in the melted layer remains almost linear during a short 
period just after the start of melting, which means that the system 
concerned remains in quasi-steady state when the critical Rayleigh 
number is determined, but it suddenly starts to deviate from such a 
linear profile at a critical time when the temperature variation of the 
free surface has its refracting point, as can be seen in Fig. 8. It might 
be expected that these phenomena mean the fact that the onset of free 
convection in the layer has just occurred at that time. The critical time 
of the onset of free convection is thus decided and the critical Rayleigh 
number is evaluated after measuring both the thickness of unstable 
layer and the temperature difference between upper and bottom 
surfaces. 

On the other hand, Sparrow, et al. [15] indicated that the rest-state 
temperature profile departed more and more from a straight one as 
Stefan number increased and that the critical Rayleigh number was 
not so much affected by the values of Stefan number but significantly 
affected by those of Biot number. Therefore, the present analytical 
assumption that the rest-state temperature profile is linear and all 
of velocity components vanish identically at the interface may be quite 
adequate because of Stefan number subjected to ice-to-water phase 
change being the degree of 10 - 2 , the order of which suggests the 
melting velocity is very slow. 

The flatness of ice surface is also frequently evaluated using a small 
wooden probe connected to the traversing instrument with a precision 
dial indicator during each of the runs. It is ascertained that the flatness 
of the ice surface is within ±0.1 mm in deviation before the onset of 
free convection in the melted layer. 

Experimental Results and Discussions 
Modified Critical Rayleigh Number Ra c . The classical stability 

criterion of the onset of free convection in a horizontal layer of com
mon fluid heated from below is experimentally expressed in terms of 
Ra = g/3(T2 - TI)H3/(VK) in which the values of all properties are 
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Table 2 Numerical values of the critical Raylelgh numbers 

1 2 3 4 5 6 7 8 9 10 
T2 oc 

Fig. 9 Effect of container side walls on Rac 

evaluated at the arithmetic mean value of Ti and T2. But under the 
present study for Tx = 0°C and T2 = 8°C, if the value of 8 is evaluated 
at the arithmetic mean temperature, it is obvious that Rat. = 0. This 
violates the classical stability criterion. So that, in the present study, 
the modified critical Rayleigh number is defined as 

R i = gP(Tm - TJ / rV(«) for T2 > 4°C (16) 

Ra r = BP(T2 - TI)HX/(»K) for T2 s 4°C (17) 

where 8, v, and K are each evaluated at 2°C in equation (16) and at the 
arithmetic mean temperature in equation (17). Such a definition as 
equation (16) is also made by Sugawara, et al. [7] and Katto and 
Iwanaga [6]. Therefore, the critical Rayleigh number thus defined and 
that adopted in the present analysis could be connected with each 
other to yield the following relations, 

= - Ra(. [Tm - Ti)* /I 3y2 l 
Ra' = T T T~\ / I1 - 9 {T'" ~ Tl) fM Tl > 4 ° ° 

I \ I 2— i i ) / I / 7 1 J 
(18) 

R a , [ , , Tm-T2 

Rat. = 1 H 
2 I Tm - Tl 

271 
for To S 4°C 

(19) 

Examination of Possible Effect of Container Side Walls. Fig. 
9 shows the experimental results indicating the relation between Ra(. 
and T2 for various test containers having 50 X 50 mm2, 25 X 25 mm2, 
11 X 11 mm2, and 8 X 8 mm2 in surface area, respectively. It can be 
seen from this figure that there is little effect of the side walls on the 
evaluation of Rac in case of the surface area being larger than 25 X 
25 mm2. All of experimental results in this paper, therefore, are ob
tained by using a container having 50 X 50 mm2 in surface area 
through all of the runs. 

Comparison Between Experimental and Analytical Results. 
The experimental values of the Marangoni number at the onset of free 
convection are utilized to evaluate the critical Rayleigh number an
alytically. Detailed numerical results are summarized in Table 2. Fig. 
10 indicates a graphical comparison between the experimental and 
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T2 °C 

1 

2 

3 

4 

4.5 

5 

6 

7 

8 

10 

12 

Ma 

7219.2 

11731.6 

15633.2 

19232.6 

22254.6 

23010.5 

30085.3 

38946.1 

47806.5 

78991.5' 

110450.5 

a 

4.062 

4.070 

4.069 

4.065 

4.064 

4.063 

4.069 

4.105 

4.239 

5.097 

6.915 

Rac 

3828.942 

4429.718 

5184.884 

6202.521 

6861.245 

7654.225 

9868.940 

13513.125 

19936.553 

47107.095 

89782.844 

Rac 

3192.099 

3165.387 

3087.512 

2954.798 

2040.575 

1493.553 

928.678 

686.378 

593.594 

574.494 

528.041 

the analytical Rac in the case of uniform heat flux (Bi = 0). Previous 
results by Sun, et al. [5] and Katto and Iwanaga [6] are shown together 
with the present predicted results. As will be seen from Figs. 3 and 
10, it seems that Rac increases while Rat. decreases and the values of 
Rac. differ from those of Rac. Such a discrepancy may be due to the 
different physical definition between Rac and Rac. 

The appearance of refraction of predicted Rac at 4°C in Fig. 10 is 
considered to be resulted from the different mathematical definition 
of Rac between T2 s 4°C and T2 > 4°C, while an abrupt dropping in 
predicted Rac for T2 > 4°C may physically indicate the fact that the 
boundary conditions concerning the surface tension and the heat 
transfer at the free surface become less significant as T2 increases, as 
pointed out in the following illustration. The surface-tension effect 
at the free surface is scarcely felt by the potentially unstable layer for 
T2 g 8°C because of the considerable thickness of the stable layer. 
Therefore, it can be understood in Fig. 10 that Rac is nearly uniform 
in this range. However, as can be seen in this figure, the critical Ray-
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Fig. 10 Comparison of experimental and analytical results 
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leigh number for T-i < 8°C increases surprisingly as Ti decreases. It 
is obvious that the role of the surface tension at the free surface would 
become more significant on the onset of free convection as the 
thickness of the stable layer decreases. So that, it can be pointed out 
that if the surface temperature of a melted water layer decreases, the 
thickness of the stable layer decreases, which corresponds to the in
creased effect of surface tension on the onset of free convection. 

The discrepancy between the predicted results and the experi
mental data may be due to the following several assumptions adopted 
in the present analysis: (a) the free-surface deformation accompa
nying free convection, as indicated by Kayser and Berg [16], is as
sumed to be negligible (w = 0); (b) the predicted results are obtained 
under the condition of a fixed heat flux (Bi = 0); (c) the possible 
condensation or evaporation at the free surface is assumed to be 
negligible. 

In Fig. 10, however, it is indicated that the experimental results of 
Rac are in good agreement with the predicted ones for Tg g 8°C. This 
may be due to the fact that in this temperature region the upper 
conditions are little sensitive to the potentially unstable layer, namely, 
the effects of the thermal and the hydrodynamic conditions at the free 
surface on the onset of free convection in a horizontal melted water 
layer almost disappears for T2 a 8°C. 

Conclusions 
1 For Ti < 8°C, the criterion of hydrodynamic stability in a 

melted water layer is found to be dependent on Ti and increases due 
to the surface tension at the free surface as T2 decreases, which means 
the thickness of the stable layer above the unstable one decreases. On 
the other hand, for Ti a 8°C, the criterion is found to be independent 
of T2 and the present analytical results approaches asymptotically 
a limiting value of Rac ^ 500 predicted by Sun, et al. [5] and Katto 
and Iwanaga [6] experimentally. 

2 The present analytical results of Rac predicted by taking into 
account both the hydrodynamic condition including the effect of 
surface tension and the thermal boundary one at the free surface of 
a melted water layer are in good agreement with the experimental 
ones. 
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Prediction of Turbulent Forced 
Plumes Issuing Vertically Into 
Stratified or Uniform Ambients 
A finite difference calculation method is used to solve the conservation equations of mass, 
momentum, and energy in differential form for a buoyant turbulent forced plume dis
charging vertically into both a uniform and a stratified quiescent ambient. This flow con
figuration is of interest relative to the discharge of thermal or sewage effluents into the 
ocean and the discharge of effluents from chimneys and cooling towers into a still atmo
sphere. The effects buoyancy on the turbulent transport model are discussed. The predic
tions, including the predicted maximum height of rise for the stratified ambient case, are 
compared with available experimental data and the results of other prediction methods. 

Introduction 

Vertical buoyant jets or forced plumes occur in engineering appli
cations related to the discharge of thermal or sewage effluent into 
oceans or lakes and the discharge of effluents from chimneys and 
cooling towers into a still atmosphere. In many applications the plume 
rise is not vertical due to the effects of currents or crosswinds. How
ever, predictions of vertical plumes are useful, since, for atmospheric 
discharges, the most adverse conditions for plume rise and dispersion 
are a ground based atmospheric inversion (stable stratification of the 
atmosphere) accompanied by no crosswind, and ground based in
versions usually occur with still air [l].1 Thus, if the height of rise and 
other plume properties can be predicted under these limiting condi
tions, a conservative estimate of the performance of the plume under 
more general field conditions can be made. 

Theoretical analyses in terms of approximate methods for predic
tion of vertical buoyant jets and plumes in uniform ambients have 
been mostly integral in nature and date back to Schmidt's work in 
1941 [2], which considered the mechanics of convective plumes (pure 
buoyancy cases, no initial momentum). Rouse, et al. [3] carried out 
similar work in 1952. They arrived at a theoretical solution for a source 
of pure buoyancy using an integral method. Morton's [4] analysis 
included the effect of initial momentum and served as the forerunner 
for later, more general formulations such as those of Fan [5], Fan and 
Brooks [6], and Hirst [7]. Numerical treatment of the partial-differ-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
July 14, 1976. 

ential equations governing the vertical plume flow in a uniform am
bient by finite-difference methods has been restricted to the work of 
Trent [8], Trent and Welty [9], and Oosthuizen [10]. No finite-dif
ference analyses to predict the height of rise of plumes in stratified 
ambients have been observed. Several integral techniques have, 
however, been proposed [4-6, 11-13]. 

In the present paper, a finite-difference prediction method for 
vertical buoyant turbulent jets in both uniform and stratified ambi
ents is described. The effects of buoyancy on the turbulent transport 
model are discussed. The predictions, including the predicted maxi
mum height of rise for the stratified ambient case, are compared with 
available experimental data and the results of other prediction 
methods. 

Flow Configuration 
Fig. 1(a) shows the configuration of a heated jet issuing into a 

uniform ambient. The jet is accelerated by buoyancy, causing the 
center-line velocity at discharge to start increasing. In a uniform 
ambient, the jet will rise indefinitely, unless interrupted by a free 
surface (in case of submerged ocean outfalls) because, regardless of 
the reduction in buoyancy by mixing, the jet is always somewhat 
buoyant with respect to the environment. 

In Fig. 1(b) the jet can be seen discharging into a stably stratified 
ambient. This plume will not rise indefinitely. The net buoyancy force 
on the jet is decreased as the plume moves upward due to the en-
trainment of the denser ambient fluid. In addition, for the stably 
stratified configuration, the ambient density is decreasing with ele
vation. Thus, as the plume ascends, due to both of these effects, the 
density difference relative to the local ambient steadily decreases, 
eventually reducing to zero. At this stage, there is no accelerating force, 
and the flow continues upward by virtue of the vertical momentum 
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Energy. 

du du I d (p„ — p) 

ds dy py dy p0 

dt dt 1 d 

ds dy pcpy dy 

(2) 

(3) 

Appropriate boundary conditions are: 

Fig. 1 Flow configurations 

du dt 
— (s, 0) = — (s, 0) = 0; u(s, 0) = 0 
dy dy 

Urn u(s, y) = u„(s); lim t(s, y) = t„(s) (4) 

it possesses, only to encounter negative buoyancy forces (due to local 
ambient fluid being lighter than jet fluid) that eventually cause total 
loss of upward momentum. At this level of maximum rise, the plume 
fluid is denser than the local surroundings and consequently will 
cascade downward around the upward flow, to ultimately spread 
laterally at a level of neutral buoyancy. 

Both the height at which buoyancy first goes to zero, called the zero 
buoyancy height, zn, and the height at which momentum reduces to 
zero, called the zero momentum height, ZM, are important unknowns 
to be determined by the prediction method. 

Analysis 
Governing Equations. We will assume that the fluid is incom

pressible and neglect density variations everywhere except in the 
buoyancy force term. This is commonly called the "Boussinesq ap
proximation." The flow configuration and coordinate system are 
shown in Fig. 1. In accordance with boundary layer assumptions and 
neglecting viscous dissipation, the conservation equations of mass, 
momentum and energy for an axisymmetric buoyant jet can be writ
ten: 

Continuity. 

— (uy) + — (vy) = 0 
ds dy 

(1) 

Initial distributions of u and t must be provided at a starting value 
ofs. 

The shear stress, r, includes both the viscous and apparent turbu
lent contributions 

du 
T = p. pu u 

dy 
(5) 

and, likewise, the heat flux, <j, includes both molecular and turbulent 
transport 

q = — k h pCpV t 
dy 

(6) 

The density difference term in equation (2) is related to the temper
ature of the fluid through 

M - t J (7) 
Pi> 

Equation (7) is a linear equation of state and is valid for both gases 
and liquids for temperature differences of practical interest to thermal 
discharges. Here /3, the volume expansivity of the fluid, is a function 
of temperature. 

Model for the Turbulent Transport. Using the Boussinesq 
concept of eddy viscosity, T can be evaluated as 

du du 
T = p(i> + I>T) — = pn — 

dy dy 
(8) 

. N o m e n c l a t u r e -

cp = specific heat at constant pressure 
do = diameter of jet or plume at discharge 
Fro = discharge Froude number, uo2lgd0(p„0 

— po)/po, dimensionless 
g = acceleration of gravity 
G = stability parameter, g(T — A)/To,a 

H = discharge depth 
k = thermal conductivity 
( = mixing length 
n = total or effective kinematic viscosity 
nH = total or effective diffusivity for heat 
Pr = Prandtl number, via 
q = heat flux due to molecular and turbulent 

transport 
ro = radius of jet or plume at discharge 
s = distance along jet or plume axis 
Sc = Schmidt number 
se = starting length 
t = temperature 
T = nondimensional temperature, (t — t„) 

/(to-t^) 

T(),0 = discharge temperature, in degrees 
absolute 

T = stratification parameter, (p_ — 
Po)/[~r0(dpJdz)] 

u = .s-component of time mean velocity 
v = y- component of time mean velocity 
y = radial distance from jet center line 
y 1/2 = radial distance from jet center line to 

point at which (u — u„)/{uc - u - ) = 0.5 
yt 1/2 = radial distance from jet center line to 

point at which (t — t„)/(tc - t„) = 0.5 
z = vertical distance 
ZM = zero momentum height 
ZB = zero buoyancy height 
a = thermal diffusivity, k/pcp 

(1 = isobaric volume expansivity, —(dpi 
dt)p/pre[ 

<5 = mixing layer thickness 
p = viscosity 
v = kinematic viscosity, pip 
p = density 
T = total or effective shear stress in s-mo

mentum equation 

X = degree of ambient stratification, 
—dt„/dz 

r = adiabatic lapse rate of the atmosphere 

Subscripts 

c = evaluated at edge of core or at jet center 
line if no core exists 

e = evaluated at outer edge of jet 
'k = evaluated at velocity half-radius 
0 = value at jet discharge 
p = evaluated at constant pressure 
T = turbulent flow quantity 
°° = free stream or ambient value 
max = maximum 
min = minimum 
ref = reference value 

Superscripts 

( )' = primes on dependent variables denote 
fluctuating quantities 

( ) = bars on dependent variables denote 
time mean quantities 
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where VT is the turbulent viscosity and n the total effective viscosity. 
It was assumed that the turbulent diffusivities for heat and momen
tum are related through 

a r •• UT/PTT (9) 

where P-TT is the turbulent Prandtl number which was set equal to 
a constant value of 0.7 for the calculations described in the present 
paper. The heat flux, q, can be written as 

dt , s 

-pcpnH— (10) -pcp(c 
dt 

• + VTIPTT) — = 
dy dy 

where UH is the effective thermal diffusivity. 
In the present work, a simple mixing length model 

|<9u I 

\dy\ 
• 0.07625 (11) 

where & is the width of the mixing layer (see Fig. 1) was found to work 
well in the initial region, which is defined as the region between the 
point of discharge and the streamwise station where mixing first 
penetrates to the jet center line as signalled by a decrease in the cen
ter-line temperature from the discharge value. The streamwise dis
tance required for this to occur is the starting length, se-

The choice of constant in equation (11) and the definition of 5 are 
related. For example, if & were based on defining the jet boundary as 
the point where (u — u t.)/(u„ — uc) = 0.9995 instead of 0.99 as used 
in the present analysis, a smaller constant would be required. This 
remark also applies to the constant in equation (12). 

In the main region of flow downstream of the starting length, 
Prandtl's constant viscosity model, 

vT = 0.0246yi/2(un ^min/ (12) 

was found to provide good agreement with the available experimental 
data. 

It is worth mentioning that the model of equation (12) is different 
from the model endorsed in [14] for horizontal nonbuoyant jet flows. 
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Fig. 2 Predicted center-line velocity decay, zero buoyancy height and zero 
momentum height for several values of prescribed edge velocity; buoyant jets 
in stratified ambient 

40 60 80100 

Fig. 3 Predicted effect of Fr0 on decay of center-line velocity and temper
ature; vertical buoyant jet or plume in uniform ambient 

This is not surprising, however, since the main thrust of [14] was the 
introduction of the velocity ratio function F as a novel feature which 
could be applied to simple models to improve their predictions over 
a wide range of velocity ratios. In fact, it was shown in [15] that good 
predictions of center-line decay values were also obtained for a wide 
range of velocity ratios using the function F along with the model of 
equation (12). The failure of any simple model suggested to date with 
a single set of constants to predict accurately the flow in both the 
initial and main regions was noted in [14]. Recourse was not taken to 
the more complex multiequation models, since the combination of 
equations (11) and (12) very economically provided reasonably good 
agreement with the available experimental data. 

Calculation Method. An explicit finite difference formulation 
of the Dufort-Frankel type was used to solve the conservation equa
tions (equations (l)-(3)) which are parabolic in character permitting 
the solution to be marched in the streamwise direction starting with 
initial distributions of velocity and temperature at discharge. Details 
of the difference formulation can be found in [14, 15] and need not 
be reported here. Streamwise steps of 8-10 percent of the width of the 
mixing zone were possible with the method. Most calculations were 
made by dividing the discharge radius into 20 equal Ay incre
ments. 

It is fairly common practice when computing jet flows into a 
quiescent ambient (u„ = 0) by a finite difference method to use a 
small nonzero velocity as the edge boundary condition (u,, ^ 0) to 
prevent the equations from becoming singular at the outer boundary 
and to avoid excessive restriction on the streamwise step size due to 
any stability constraints. The majority of the calculations described 
in the present paper were made using u,, = 0.05 UQ. Fig. 2 shows the 
results of several calculations for a stratified ambient where u,. was 
set equal to 7, 5, 3, and 1 percent of the jet discharge velocity to de
termine the sensitivity of the solution to the assumed value of u,.. The 
effect of replacing u,, = 0 with 0.05 ua seems small, and extrapolating 
to give values of z„,//'o and z/j//-0 corresponding to «,, = 0 showed a 
deviation of less than 2 percent. 

Most of the calculations reported in this paper have required less 
than one minute and none more than two minutes of computation 
time on the IBM 360/65 computer,, 

Results 
Uniform Ambient. Fig. 3 shows the general pattern of predicted 
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Fig. 4 Predicted and experimental decay of center-line temperature for Fr0 

= 4.0; buoyant vertical jet in uniform ambient 

growth and decay of center-line values of velocity and temperature 
over a Froude number range from 1 to 1000. We note in particular that 
at low Froude numbers the jet is accelerated significantly due to 
buoyancy and this results in a dissimilarity in the decay patterns for 
velocity and temperature. Due to the similarity in the transport 
equations governing the nondimensional species concentration and 
temperature in fully turbulent flow (Scr ~ 0.7 for species also), Fig. 
3 can be used to estimate the decay of the nondimensional center-line 
species concentration also. 

Figs. 4-6 compare the predicted center-line temperature decay with 
the experimental results of Pryputniewicz [16, 17] and Ryskiewich 
and Hafetz [18] for Froude numbers of 4,16, and 64. Comparisons for 
Froude numbers as high as 2500 can be found in [15]. Except for a ten 
ency to overpredict the starting length, the agreement between the 
predictions and the measurements is quite good and somewhat better 
than the Fan and Brooks [6] prediction shown in Figs. 5 
and 6. 

The experimental data of Pryputniewicz was taken with (to — £„„) 
equal to 100°F, which translates to a density difference of only about 
3 percent, not significant enough to affect the validity of the Boussi-
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Fig. 5 Center-line temperature comparisons for Fr0 = 16; buoyant vertical 
jet in uniform ambient 
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Fig. 6 Center-line temperature comparisons for Fr0 = 64; buoyant vertical 
jet in uniform ambient 
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Fig. 7 Comparisons with experimental and theoretical results; buoyant 
vertical jet in uniform ambient 

nesq assumption or the assumption of linear equation of state for 
density (equation (12)) used in the present analysis. 

Further comparisons with the measurements of Pryputniewicz [16, 
17] for the uniform ambient case are shown in Fig. 7 for Froude 
numbers of 1, 25, and 625. The finite-difference predictions of Trent 
and the predictions of Pryputniewicz [16] using the integral method 
of Hirst [7] are also shown in Fig. 7. Overall, the present method ap
pears to provide the best agreement with the experimental data which, 
of course, is subject to uncertainties in measurement, even though the 
level of uncertainty has not been stated in [16 or 18]. 

For the vertical jet, the buoyancy forces act in the streamwise di
rection and the effects of buoyancy on the effective viscosity in the 
boundary layer form of the equations are not expected to be as great 
as for configurations in which the buoyancy forces act in the transverse 
direction. However, from Figs. 4-7 we can detect a slight tendency 
for the present turbulence model to underpredict the center-line decay 
for low Froude numbers (large relative buoyancy effect) and over-
predict for the largest values of Fr suggesting that buoyancy may serve 
to increase the effective viscosity slightly. In [15] where more com
parisons are indicated, the model is also seen to slightly underpredict 
for Fr = 1 and overpredict for Fr = 625 and 2500. Overall, however, 
the predictions of the model are seen to be quite good despite its 
simplicity. Except for the prediction of the initial region where further 
work is called for, the disagreement between predictions and the ex
perimental data was so small that there appeared to be no clear basis 
upon which to attribute this discrepancy solely to the effects of 
buoyancy on the turbulent viscosity.. Buoyancy likely influences the 
transverse turbulent mixing slightly, but we feel that the present study 
suggests that it is of secondary importance for the vertical config
uration for the entire range of Froude numbers considered. 

The question naturally arises as to the usefulness of the predictions 
of the present method for the case of vertical discharges into relatively 
shallow water where surface effects are expected to come into play. 
The effect of the water surface is to retard reduction of the plume 
temperature in the vicinity of the surface [17]. 

An effective depth can be defined as that height above the jet dis
charge beyond which the plume experiences no further entrainment 
and continues to the surface with this temperature unaffected [19]. 
The jet behaves as a free jet within its depth. Pryputniewicz and 
Bowley [16,17] and Ryskiewich and Hafetz [18] experimentally ex
amined the effect of discharge depth on center-line temperature 
decay. The conclusion from the former was that the rate of center-line 
decay was relatively independent of the discharge depth for Fr0 below 
256. According to the latter, the same conclusion holds for Fro as high 
as 900. In their experiments, which were carried out for flows with 
discharge depths ranging from H/d0 = 10 to 80, and for a wide range 
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of Fr0, the effective depth was found to be 92-93.5 percent of total 
depth for Fr0 as high as 900, i.e., the results are relatively independent 
of discharge depth up to that value of the discharge Froude number. 
This provides an idea of the range of Fr0 values over which the present 
method can be used to predict shallow water discharges. 

In a typical ocean outfall configuration for a 1000 MW unit (nuclear 
or fossil), the discharge Froude number would range between 50 and 
100 [20], well within the range of applicability of the present analysis. 
In general, the present analysis can also be used to give an estimate 
of the maximum temperature at the surface by calculating as usual 
up to the effective depth, and allowing the plume temperature to re
main constant above that height. 

Stratified Ambient. Predictions of the zero buoyancy height by 
the present method are seen to agree well with the theory of Fox [12] 
in Fig. 8 where coordinates derived by Sneck and Brown [1] for air are 
used. Sneck and Brown found that the Fox theory agreed well with 
their experiments in air for modest ZB/>'O-

Table 1 compares the predicted results for maximum height of rise 
with the measurements of Abraham and Eysink [21], Fan [5], and Fox 
[12] and the predictions of the integral theory of Fox. The present 
method is seen to give quite good agreement with the measurements. 
The Fox theory is observed to significantly underpredict the measured 
maximum height of rise in most of these comparisons with measure
ments obtained with liquids, although better agreement has been 
noted for liquids at higher discharge Froude numbers [12] and in air 
for conditions resulting in modest values of zm/rQ [1]. The reason for 
this discrepancy is not clear to the authors. 

It is interesting to observe that the present method based on 
boundary layer assumptions does give reasonably good predictions 

^31.6 

X = DRY AIR LAPSE RATE 
r = ADIABATIC LAPSE RATE 

Fig. 8 Zero buoyancy plume height; vertical plume in stratified ambient 
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Table 1 Maximum height of rise for vertical plumes into stratified ambi-
ents 

Number 

1 

2 

3 

4 

5 

6 

Discharge 
Froude 
Number, 

54.5 

50.5 

69 

605 

324 

63 

Strat i f icat ion 
Parameter, 

r 
83 

141 

94 

134 

205 

1586 

V o 
Measured 

Abraham 
& 

Eyslnk 

Fan 

Fox 

61 

74 

64 

68 

86 

104 

V o 
Predicted 

Present Fox 
Method Theory 

61.2 

72.7 

65 

72.5 

105 

115 

35 

50 

44 

49 

72 

" 

for the maximum height of rise. The maximum height of rise com
parisons are summarized in Fig. 9 where z„,A'o predicted by the 
present method are plotted against the experimental values. The 
predictions of Hirst [13] over the same range ofz„,/ro are also included 
in the figure. 

Concluding Remarks 
A finite difference prediction method with a simple turbulence 

model is seen to provide good agreement with experimental data for 
buoyant jets discharging vertically into both a uniform and a stratified 
quiescent ambient. The method permits the prediction of the maxi
mum height of rise, which should be of considerable interest in dis
charge design. In the uniform ambient case, the predictions for tem
perature can be interpreted in terms of species concentration without 
requiring the additional solution of the equation for species concen
tration. The reason for this generality is that for fully turbulent flows, 
the partial differential equation governing the concentration of ef
fluent, in nondimensional form, is the same as the nondimensional 
energy equation. In the stratified ambient case, the boundary con
ditions usually are different for the two equations, but the method 
can be readily extended to provide simultaneous solutions for species 
concentration, also. 

It should be noted that a fairly good level of agreement between 
predictions and measurements has been obtained with a turbulence 
model which does not account for the effects of buoyancy on the 
turbulent mixing. This suggests that the influence of buoyancy on the 
turbulent transport is of secondary importance for vertically dis
charging buoyant jets, although a trend which suggests that buoyancy 
may tend to enhance the apparent turbulent viscosity slightly can be 
discerned in Figs. 4-6. 
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Mass Transfer and Pressure Rise in 
Moist Porous Material Subjected to 
Sudden Heating 
In this paper the authors treat heat and mass transfer which may occur in a moist porous 
material when it is subjected to a sudden heating of a prescribed temperature at the sur
face. The basic equations describing the heat and mass transfer and their dimensionless 
forms are presented. Thereafter, a procedure to solve the basic equations is mentioned 
by using their finite difference equations. Referring to the results of the numerical compu
tations, the influences of various parameters including thermal conductivity, heat capaci
ty, void fraction, mobility, and initial water content of the material upon temperature, 
pressure, and moisture distributions in the material are discussed in detail. As a conclu
sion of these discussions, the authors present an empirical formula to predict the maxi
mum pressure. The proposed formula is compared with experimental results and it is 
found that the formula is useful for the prediction of the maximum pressure occurring in 
the material during heating. 

Introduction 

When a moist porous material is suddenly heated at its surface, 
a steep pressure rise due to evaporation of water contained in the 
material occurs in the vicinity of the heating surface and causes the 
water vapor transfer to a region of lower temperature in the material. 
The characteristic feature of this process is that the transfers of heat 
and mass occur simultaneously in the material and a moving boundary 
exists in it, which separates it into two regions with different ther
modynamic properties. In addition, an absorption of latent heat and 
evaporation of water occur at this boundary. The problem concerning 
the pressure rise and the vapor transfer is not only interesting from 
the scientific point of view but also significantly important for the 
industrial practice. Casting in sand mold is one of the examples re
lated. When a molten metal is poured into a green sand mold, a sudden 
pressure rise which often causes serious defects of casting products 
such as pinhole, blowhole, or penetration occurs at the interface be
tween the metal and the mold [l].1 Therefore, to find out.any effective 
measure in order to avoid the rise, it could be said that the investi
gation of heat and mass transfer in the green sand mold should be 
performed in more detail. 

Only a few studies of the transfer phenomena in casting mold have 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
July 26, 1976. 

been reported up to now. For example, H. G. Levelink and H. van den 
Berg dealt with a pressure vibration which occurred when a molten 
metal was cast in a green sand mold and pointed out through their 
discussions that various defects such as penetration, scabbing, or the 
other rough surface finish should be considered to be originated from 
the explosive evaporation of water contained in the mold [2]. 

In this paper the authors will present the computed results of un
steady temperature, pressure, and water content distributions in a 
moist porous material, the surface of which is suddenly changed to 
and maintained at a constant temperature, after stating their gov
erning equations describing heat and mass transfer in the material. 
Especially from the standpoint of practical usefulness, the progressive 
variation of the maximum pressure in the material is mainly discussed 
and a consolidated formula to predict it will be proposed in a form of 
power function and compared with the experimental data. 

Basic Differential Equations 
Now consider heat and mass transfer in a moist porous layer of 

thickness L and initial temperature T„ the one surface of which is 
suddenly changed to and maintained at a constant temperature T0, 
as shown in Fig. 1. If the heating temperature To is higher than the 
saturation temperature of water contained in the layer, the moving 
boundary B demarcates the layer into two regions, that is, dry and 
wet regions. Therefore, the basic equations governing heat and mass 
transfer in the layer should be derived individually for each region. 

The present theoretical model is based on the following assump
tions: 

(1) No liquid water movement is present in the material. This 
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Fig. 1 Schematic view ot temperature distribution in a heated moist porous 
material 

assumption is based on the fact that if the volume of the liquid water 
is negligibly small in comparison with void fraction of the material, 
its transfer rate can be considered to be negligible. 

(2) Air and the other inert gas in the material have no significant 
influence on heat transfer. This assumption is based on the fact that 
their enthalpies are effectively smaller than that of water vapor. 

(3) Vapor and liquid water in the wet region are in thermody
namic equilibrium at every position. This assumption seems to be 
reasonable considering that the temperature change in the wet region 
takes place comparatively slowly and in addition the effective area 
participating in condensation and evaporation of water are considered 
to be extremely large in porous material. 

(4) Darcy's law is valid for vapor flow through the material. 
(5) Thermal conductivity, heat capacity, and mobility are con

stant in each region. 
(6) The volume occupied by liquid water in the material is neg

ligibly small in comparison with void fraction of the material. 
From these assumptions the mass transfer equations for each region 

are introduced as follows: 

<9T 

de 2 

dr 

•K: 

= K2 

dx 

_d_ 

' dx2 

1 \L>i dX\/ 

\u„2 dx2J 

O S J i l f 

f s t ^ L 

(1) 

(2) 

Since the vapor in the dry region is considered to be superheated, the 
relations of e,i = ti, tt — 0, «i = \p/vi should hold. Therefore, equation 
(1) can be rewritten in the following form: 

Ki d / dPi\ 

Ci \ dx\/ dr I/> dxi 
(3) 

From the assumption (3), vs2 in equation (2) is equal to specific 
volume of dry saturated vapor, v2", at its corresponding pressure, P->-
This means the following relations should hold: 

y»2 = «2 (\p - if2vi)Us2 

Furthermore, assumption (6) yields the relation us2 = vVe.,-2. Substi
tuting this into equation (2), the following mass transfer equation for 
the wet region can be obtained: 

dt2 

dr ' 

K 2 _ 3 _ / dP2 \ 

ii dx2 \ dxo/ f ==x 2 s£ (4) 

A product of difference of water content between up- and down
stream of the moving boundary and its moving velocity should be 
equal to the difference in the amount of vapor flowing into and out 
of the boundary. Accordingly, mass balancing equation at the moving 
boundary is expressed as follows: 

( £ 1 '2={ ~ e-Vl = f ) 
dr \p \ dx\'*i={ \p V * dx2Jx 

(5) 

Since the heat transfer in a moist porous material is considered to 
be the sum of the enthalpy transferred by vapor movement and the 
heat by conduction by the assumptions (1) and (3), the heat transfer 
equations for each region can be described as follows: 

6Ti (£li,) d 2 ^ , K, 
cp 1 = X 

dr dr 

i + __L ( e i — ) 0£Xl±Z 
dxiz \p dXi \ dxi/ 

(6) 

dT2 , d(e2i2) , d2T2K2 d I . dP 2 \ h T ^ 

or or dxiz f ox2 \ ox2l 

Heat balancing equation at the moving boundary is 

l(eiii)*i={ _ (<;2i2).t2=f) ~T 
dr 

= - X i • 
/3Ti 

\dx ) +^(?) 
/ * ! = { \dXo/xv 

' 1> 
i / . d ^ A K2 ( . dP2\ 
- I C l J l 1 + ( £.s')J,2 ) 

aP, 
(8) 

-Nomenclature. 

a = thermal diffusivity of sand (m2/h) 
ce = specific heat of water (KJ/kg K) 
cp = heat capacity of dry sand (KJ/m3K) 
i = enthalpy of vapor (KJ/kg) 
K = mobility of sand (m4/h N) 
L = thickness of sand layer (m) 
P = pressure (N/m2) 
T = temperature (K) 
T0 = heating temperature (K) 
v = specific volume of water vapor (m3/kg) 
x = distance from heating surface (m) 
c = mass of water contained in unit volume of 

moist sand (kg/m3) 
X = thermal conductivity (KJ/mh K) 
£ = position of moving boundary measured 

from heating surface (m) 
T = time (h) 
<p = porosity of dry sand (m3/m3) 

Dimensionless Parameters and 
Variables 

H = heat capacity ratio (= cec,/cp) 
i = dimensionless enthalpy (= qi/cpTi) 
K = dimensionless mobility (= KP,cp/Ai/<) 
P = dimensionless pressure (= P/Pi) 
f = dimensionless temperature (= TITO 
W = dimensionless initial water content ( = 

x = dimensionless distance (= x/L) 
I = dimensionless water content (= e/q) 
o = ratio of thermal conductivities ( = 

X1A2) 
T = dimensionless time (= ar/L2) 
6) = ratio of mobilities (= K2/K{) 
£ = dimensionless position of moving 

boundary (= f/L) 

j ; = dimensionless variable (defined by 
equation (12)) 

f = dimensionless variable (defined by 
equation (13)) 

Suffixes 
0 = heating surface 
1 = dry region 
2 = wet region 
s = water vapor 
(. = liquid water 
i = initial state 
;' = truncation with respect to time 
m = truncated point corresponding to mov

ing boundary 
n = truncation with respect to space 
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The boundary and initial conditions relevant to the present problem 
are I \<9f/f=o V 3f/f=oJ 

dPi 
x = 0: T, = T0, — - = 0 

dx\ 

x = L:T2 = Ti, P2 = Pi 

T = 0: T, = T2 = T,-, P , = P 2 = P, 

(9) 

(10) 

(11) 

3f • 

^ = 1:7, = T o , — L = 0 (9a) 

The boundary condition concerning the pressure gradient in 
equation (9) takes into consideration the realistic phenomena that 
immediately after pouring a molten metal into a casting mold, there 
should be no clearance at the interface between the metal and the 
mold and also no vapor flow at this position. 

I n t r o d u c t i o n of D i m e n s i o n l e s s V a r i a b l e s and 
T r a n s f o r m a t i o n of B a s i c E q u a t i o n s 

Since it is generally very difficult to obtain the exact solution of the 
basic equations mentioned previously with respect to T, P, and e an
alytically, a numerical computation is employed to obtain their so
lutions in the present study. The numerical method to analyze the 
problem with moving boundary has been reported extensively by 
previous investigators, for examples, by Murray and Landis [3], by 
Landau [4], and so on. Especially the characteristics of the method 
proposed by Landau consists of the transformation of independent 
variables with which a moving boundary is reduced to a fixed 
boundary and seems to be advantageous to the present problem in 
which the equations describing the conditions at the moving boundary 
involve unknown variables such as T and P . 

According to the Landau transformation, the independent variables 
concerning the position of dry and wet regions are transformed into 
the following forms: 

f ; 

}-xi 

' 1 - ? 

0 

I S x2£ 1 

(12) 

(13) 

Substituting the dimensionless parameters and variables tabulated 
in the nomenclature and the variables defined by equations (12) and 
(13) into the basic equations, equations (3)-(l l) , the following 
transformed expression can be obtained, respectively: 

f = l : T 2 = T , ( = l ) , P 2 = P ( = 1 ) (10a) 

T = 0:f1 = f2 = f ; ( = l ) , P 2 = P , = Pi (= 1) (Ha) 

where { = —. The transformed coordinate system is shown in 
df 

Fig. 2. 

Numerical Analysis 
1 Finite Difference Equations. Using backward finite dif

ference with respect to time, the basic equations, equation (3a)-(8a), 
are expanded into the following finite difference equations, respec
tively: 

(KrYrtLnj + ^KiYiEJP^j 

-2K1Y1h,njPi,nj+(KiY1€1.nj--KiYlEl)Pi,n+lJ 

4 

- \ IjlM ~ riY-zE, - lHh,nj - h,n,j-i) = 0 (36) 

1 -
(Kia>Zit.,2,„j + -KitbZiEi)P2,n-\J 

4 
- ZKiS>Zies2,n.jP2,n.j + (K\uZ{is2nJ 

--KlZ,ZlE2)P2,n+ij + - ( 1 - l)(l - nljY2E2 4 2 

- (1 - D2$2.nJ - h,nj-l) = 0 (46) 

• K 
(h.mj - h,n,j)hha - D = ~a - £/) — C l , m j C P l , m - l j ~ Pmj) 

AT; 

- KI5> -
~ ij —— t2,mj(Ps2.m+lJ ~ Pmj) (56) 

Af 
yt--HjHja-v)Y2\TUn-hJ 

6T dri V dri / drj 

d 

aPi 

dr) • 

dP2\ 

V t«2 

•Ua-v) 
dr. 

0 £ 7) £ 1 (3a) - (2Yj + fe2)T,,BJ- + j Yi + - fcfc(l - v)Y2\ TUl+lJ 

+ D \Tl,n,j-l ~ (hh)nj + ihll)nj-l) ~ ~ IjlM ~ v)Y2h 

+ a-i)la-n^ o^rs i <4«) 
of 

fe{=o-?i„=o)K(l-?) = - ( ! 
\ dr, I ii=0 

3P;\ 
f.s-2 ) (5a) 

J3T) | d(hh) 
I df dr 

d2fl i / ? . d hi,dPi) 
"2 dn \ dri I dr,2 

tin \ \dTl i d{Ui) 

•&a -v) \— + —— 
l dr, or. 

0 £ v s 1 (6a) 

\d~T dr J of2 

- d I - dP2\ 
+ Kiw — ( e.,2js2 I 

+(i-?)f(w)|5+^r) °-^1 (7a) 
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+ -KiYJl(Pl,n-l,j ' Pl.n+lj) + KlYdhlrinjD! = 0 (66) 
4 

JZ, + - (1 - £;)&(! - nZ2\ T2,n-U 

• (25-Zi + (1 - l2)\T2.nj + [ iZt - - (1 - |/)J 

X (1 - f)£2 7\„+l j- + (1 - l / J i f^ j - i - fe^W 

+ (?2r2)nj-ii + - a - iMja - nz2h 
1.-, 

+ -KiU,Z,I.2(P2,n-lj - P%n+lj) + K&Z&rti^njDz = 0 (76) 

4 

Ifei2)my - (?Ji)mjl?yI>(l - li) 
= - ( 1 - lj) \— (Tlim-lJ - fmJ) + -± (<Jl),n,j(Pl,m-l,J 

I A?) A); 

? ; | —, ( f 2 , m + i j - f m J ) + - ^ (e lr2)„, j (86) 
I Af Af 

X (P2,m+l,j ~~ Pmj) 

where 

A T A T 
Y I = , Y2 = — , 

Ar;2 A 7/ 

^ 1 = «l,n-lj — * l , n+ l j> 

A T 

E2 = ?2,n-

A T 

-lj - «2,n+lj 

/l = Ci\i\)n-\,j ~ («ltl)n+Ij. 2̂ - (Ws2)n-lj _ (W»2)m+1 j 

Bl = Pl.n + lj - 1P\,n.j + Pl,n-lJ, D2 = P2.n+l,j ~ 2P2.nJ + P-Z.n+j 

2 Outline of Numerical Computation. Since the calculation 
for \ = 0 cannot be performed in the present method, the computation 
must be started from a point advancing by small initial increment, 
\ = Af, which is assumed appropriately. In order to calculate T and 
P for any T, their approximate values are first estimated by putting 
the values of i and i assumed previously, which are the functions of 
both T and P, into the finite difference equations and then E and i are 
evaluated by substituting those obtained into the equations of state 
of water and water vapor. This procedure should be repeated until 
the discrepancies between the assumed and the calculated values of 
i and i become insignificant. The routine of such numerically calcu
lating procedure is outlined as follows: 

1 Space increments of A?j and Af are decided appropriately. Initial 
ft and the corresponding P;, e„ and i, evaluated from the equation 
of state are assigned to each truncated point. 

2 Initial increment Af is assumed. Time increment Af is decided 
as a time interval required to evaporate water contained in the in
crement A£\ 

3 f is calculated from the relation \ = Af/Af. Putting this into 
equation (56), Pm is obtained. T,„ is evaluated by using the equation 
of state for saturated water vapor as a saturation temperature cor
responding to this pressure. 

4 Pi can be calculated by solving the so-called tridiagonal equa
tions, equation (36), under the condition of (9a). T\ can be also ob
tained in the same way. 

5 ?i and i'i are evaluated by substituting Pi and fy into the 
equation of state. 

(6) T2 is calculated from equation (76) and condition (9a) in the 
same way as step 4. P% e.s2, and lg2 are obtained from the equation of 
state. 

7 By substituting the results of step 6 into equation (76), ea can 
be calculated and then i2 can be computed. 

8 Procedures 3-7 should be repeated until the discrepancies be
come insignificant between the Values of E and; assumed in step 3 and 
those calculated in steps 5 and 7. 

9 Calculation for the next time step is performed by using new 
Af estimated from equation (86) and also repeating the procedures 
3-8. 

Fig. 3 An example of the calculated results of the distributions of tempera
ture, pressure, and moisture content 

The formulas proposed by Tanishita [5] were used in the present 
calculations as an equation of state of water and water vapor. 

R e s u l t s and D i s c u s s i o n 
The calculations were carried out for various combinations of the 

following parameters: Kx = 10z, lO11, and 1.5 X 10:\ W = 11.7,10, 5.8, 
5.0, 3.9, and 10/3, H = 0.05, 0.1, 0.2, and 0.3, f0 = 3.4, 4.5, and 5.5, S> 
= 0.45, <i = 1.2, L = 0.1. Some calculated results are shown in the 
following figures, Figs. 3-5, to understand how much these parameters 
influence the transfer phenomena in a moist porous material. 

1 Distributions of Temperature, Pressure, and Moisture 
Content. Fig. 3 shows the dimensionless temperature, pressure, and 
moisture content distributions in a moist material with dimensionless 
time f as a parameter. The abscissa of this figure is i\ for dry region 
and f for wet region; therefore the position of i\ = f = 0 corresponds 
to that of the moving boundary. It will be seen in this figure that the 
dimensionless temperature distribution curve in the dry region has 
a tendency to be a slightly slack shape within a small f, but to become 
a tight shape with increasing T. The dimensionless temperature dis
tribution curve in the wet region forms "wen" in the vicinity of the 
moving boundary at first and grows up to "plateau" as the dimen
sionless time f advances. Such "wen" or "plateau" shaped tempera
ture distributions can be almost always observed in heat transfer 
phenomena accompanied with mass transfer and its phase change. 
This may be due to the latent heat delivered by water vapor evapo
rated at the moving boundary and transferred to a region of lower 
temperature and then condensed. As also seen in Fig. 3, the dimen
sionless temperature at the moving boundary increases at first and 
reaches its maximum value and, thereafter, decreases with increasing 
dimensionless time f. Such a tendency should correspond to the 
pressure variation at the moving boundary, since the temperature at 
this point must coincide with the saturation temperature associated 
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with the pressure. 
The dimensionless moisture content distribution curves are also 

indicated on the right side of upper portion of Fig. 3. It is clearly seen 
that the dimensionless moisture distribution is not so varied within 
a small f but the accumulation of the moisture is concentrated in the 
vicinity of the moving boundary with increasing r. This accumulation 
may be a result of the recondensation of the vapor which has traveled 
from the moving boundary to the wet region. In this figure it is in
teresting to recognize that the accumulation is limited to a compar
atively narrow portion in the wet region. 

Fig. 4 presents the variations of the dimensionless moisture content 
at the moving boundary, cmax, against dimensionless time f. Com
paring the curves 3 and 4 in this figure, it can be seen that the di
mensionless mobility K\ has little influence on the accumulation. 
Furthermore, the curves 1 and 3 show that the dimensionless heating 
temperature To has a great influence upon the accumulation com
pared with that of dimensionless mobility K\. But the most effective 
parameter among those is the dimensionless water content W, which 
consists in a ratio of void fraction and initial water content in the 
material. 

The dimensionless pressure distribution shown in Fig. 3 is almost 
flat in the dry region; however, it asymptotes to P, ( = 1) in the wet 
region after abruptly falling down near the moving boundary. In ad
dition, a tendency can be seen in this figure for the dimensionless 
pressure in the dry region to decrease with increasing dimensionless 
time f as it propagates over the wet region. This may be understood 
by considering as follows: The vapor generated at the moving 
boundary should have a pressure required to flow through the ma
terial. However, since no vapor generation occurs in the dry region 
and no vapor flows through the heating surface, the vapor generated 
at the moving boundary should be forced to flow toward the wet re
gion. For this reason the dimensionless pressure distribution in the 
dry region becomes almost flat. 

Fig. 5 shows the pressure variation at the moving boundary for the 
various combinations of the dimensionless parameters against f. In 
this figure, the dimensionless pressure at the moving boundary, which 
may be considered to be equal to the pressure at the heating surface 
of the material and to have an important role in practice, rises rapidly 
and reaches its peak within f ^ 2 X 10 - 5 to 5 X 10~~5 and then de
creases with increasing f. It is also observed in this figure that an in
creased pressure rise is generated by increased value of the dimen
sionless heating temperature To and decreased) values of the di
mensionless mobility Ki and the dimensionless water content W. In 

practical casting it is widely known that a vapor pressure in a mold 
increases with increasing moisture content and temperature of a 
molten metal and with decreasing porosity and permeability (i.e., 
mobility) Of the mold. The calculated results presented previously 
reasonably agree with the experience concerning the qualitative be
havior of the vapor pressure. 

2 Dependency of the Maximum Pressure on the Dimen
sionless Parameters. In this section, the influences of the various 
dimensionless parameters on the maximum pressure, Pm a x , which may 
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play an important role in practical use, are to be discussed. 
Figs. 6-9 present the dependency of the maximum pressure, PmQX> 

upon heat capacity ratio H, dimensionless water content W, dimen-
sionless heating temperature T0, and dimensionless mobility Kl: 

respectively. 
Fig. 6 shows the change of the maximum pressure P m a x against heat 

capacity ratio H for several combinations of the dimensionless mo
bility Ki and water content W in case of the prescribed dimensionless 
heating temperature T0 (=5.5). This figure tells us that the maximum 
pressure P m a x decreases with increasing heat capacity ratio H. This 
fact may be explained as follows: A larger value of H results either 
from larger initial water content e, or from smaller heat capacity cp 
of the material. However, only the latter case is realistic because each 
line in Fig. 6 should have a fixed value of W and i?i; therefore cp 
should decrease with increasing H so as to keep W constant; finally, 
thermal conductivity X must decrease so that Ki may be maintained 
at a fixed value. Consequently, a larger H means that the heat sup
plied to the moving boundary decreases. 

And it can be also observed in Fig. 6 that a higher value of the 
maximum pressure P m a x can be produced by a smaller values of the 
dimensionless mobility K\ and dimensionless water content W. Fig. 
7 shows the results rearranged in order to clarify the dependability 
of Pmax on W. This figure suggests that the maximum pressure P„,ax 

which decreases with increasing dimensionless water content W can 
be expressed as a linear function on a double logarithmic sheet. 

In general, the dimensionless heating temperature T0 is considered 
to have an effect on the maximum pressure P m a x . Fig. 8 presents the 
variation P m a x against T0. In this figure it will be found that the 
maximum pressure Pmax increases with progression of the dimen
sionless heating temperature T0, although the effectiveness of T0 to 
Pmax is little different according to the values of Ki, W, and H. 

However, the most sensitive factor to the maximum pressure P m a x 

is dimensionless mobility Kh As will be seen in Fig. 9, P m a x increases 
with decreasing K\. The physical reasoning behind this fact is as 
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follows: A small value of the dimensionless mobility K\ could result 
either from a small value of mobility K\, which indicates a resistability 
of vapor transfer causing pressure rise, or from a larger value of 
thermal diffusivity A/cp. The latter case means that the more heat 
supplied to the moving boundary, the higher the pressure rise pro
duced. 

As a consequence of the foregoing qualitative discussions, it may 
be concluded that a high pressure in the material will be caused by 
a large value of dimensionless heating temperature To as well as small 
values of dimensionless water content W, dimensionless mobility K\, 
and heat capacity ratio H. 

3 Empirical Formula to Predict Pmax and Its Comparison 
With Experimental Results. A special characteristics observed in 
each of Figs. 6-9 indicates the fact that the lines correlating the 
maximum pressure P m a x with each dimensionless parameter are al
most straight and parallel on a double logarithmic sheet. This fact 
means that P m a x is predictable by means of a product of power func
tions of these dimensionless parameters. 

Thus, the calculated values of the maximum pressure Pmax might 
be represented by the following empirical formula with a good accu
racy: 

P m a x = 595.4 iy-0.4516 X f00.53B7 X £,-0.5008 X #-0.17f.2 ( M ) 

Fig. 10 is a result comparing the empirical formula (14) with the 
experimental values. The abscissa of this figure is the value obtained 
by substituting the dimensionless parameters, values of which are 

T„=5.5, d^l .2. 
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Fig. 10 Comparison of the values predicted by equation (14) with those 
obtained by the experiments 

measured in each experiment, into the right side of equation (14), and 
the ordinate is the maximum pressure P m a x obtained in each run of 
the present experiment. 

The experimental results marked with open circles in Fig. 10 were 
obtained as follows: The experiments were carried out by using a steel 
pipe of 90 mm ID and 230 mm length, which was filled with rammed 
moisture sand and heated at one end. Both ends of the pipe were 
covered up and shielded with aluminum sheet 1-mm thick to prevent 
leakage of the vapor generated in the pipe and crumbling of the sand. 
The sand fill was heated by pressing one end of the pipe on a heating 
metal maintained at a prescribed temperature. The distributions of 
the temperature and the pressure were obtained by measuring their 
values at every position of distance 2.5 mm, 5 mm, 10 mm, 15 mm . . . 
from the heated end. The temperatures were measured by inserting 
thermocouples into these positions and the pressure by guiding water 
vapor to semiconductor pressure transducers through copper tubes 
of 1.5 mm ID. The employed testing sands were olivine and silicate 
sand in which 1 perccent (by weight) of caoline clay was added as a 
caking substance. 

As will be seen in Fig. 10, the experimental results are a little scat
tered. This may come from the following reasons: (1) a step temper
ature rise could not be perfectly realized in the present experiments, 
(2) moreover, the undesirable heat transfer from the wall of the pipe 
to the sand was inevitable, and (3) there were considerable difficulties 
in ramming the sand uniformly and in guiding the vapor pressure 
without condensation in the guiding pipes. 

However, from the tendency of the experimental results in Fig. 10, 
it might be justified to say that the maximum pressure occurring in 
a moist porous material subjected to step heating can be predicted 
by the empirical formula of equation (14). 
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Temperature Distributions in Fire-
Exposed Building Columns 
A procedure based on a finite difference method is described for calculating the tempera
ture history of fire-exposed protected steel columns with rectangular cross section and 
heat generation or absorption in the insulation. Comparison with results of tests and 
those obtained from an analytical solution of the heat transfer equations indicates that 
the accuracy of the method is adequate for fire engineering purposes. The method is also 
suitable for the calculation of temperatures in monolithic building components such as 
solid concrete columns, beams, and walls. It can also be used for the calculation of temper
atures of any system in which a perfect conductor or well stirred fluid is enclosed in an en
casement, for example, water-filled hollow steel columns or beams, and exposed to a radi
ative heat source of varying temperature. 

Introduction 

It is known that exposure to fire reduces the strength of load-
bearing building components such as columns, beams, and walls. One 
method of preventing excessive loss of strength and consequent col
lapse of a building is to restrict the temperature rise in these compo
nents by providing protection. One of the problems in selecting an 
appropriate protection is the evaluation of its effect on the fire per
formance of a component. In the past this could be determined only 
by experiment. Recent developments, however, have made it possible 
to solve many fire performance problems by calculation, which is far 
less expensive and time consuming. 

In order to calculate the fire performance of a building component 
it is necessary to know the temperature history of the component 
during exposure to fire. In this paper a numerical method is described 
for the calculation of the temperature field in fire-exposed columns. 
The calculation procedure is based on an improved version of a finite 
difference method, which offers the advantage of a network of points 
with which the corners of rectangular configurations can be reached 
without difficulty [l].1 It was applied in a study [2] describing the heat 
flow in fire-exposed square steel columns protected by an insulating 
•material. In the present paper, this study is extended to the calcula
tion of the temperature history of columns with rectangular cross 
sections (Fig. 1). In addition, the possibility of taking into account heat 
generation or heat absorption by the protecting material has been 

1 Numbers in brackets designate References at end of paper. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER, Manuscript received by the Heat Transfer Division 
March 29, 1976. 

Journal of Heat Transfer 

included. Furthermore, comparisons made in a previous paper [2] 
between calculated and experimental results are supplemented in this 
paper by comparisons between results obtained from the numerical 
method and those from an analytical solution of the heat transfer 
equations. 

Calculation Method 
With the technique described earlier [1, 2], the cross section of the 

insulating protection is divided into several elementary regions as 

Fig. 1 Cross section of a typical protected steel column 
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Fig. 2 The arrangement of the elementary regions of a one-quarter section 
of column protection 

shown in Fig. 2. They are square inside the insulation and triangular 
at its boundaries. The temperature at the center of each element is 
taken as representative of that of the entire element. The represen
tative point for each triangular boundary element is located on the 
hypotenuse. 

Because the thermal conductivity of steel is normally at least 20 
times higher than that of the protection, steel will be considered as 
a perfect conductor. This implies that the temperature of the steel 
core will be assumed to be uniform over its entire volume. Conse
quently, the two-dimensional network need not be extended over the 
cross-sectional area of the steel core. Instead the subdivision of the 
steel core can be done in a more convenient way as will be described 
later. Furthermore, it will be assumed that the capacity of the air 
enclosed by the protection is negligible in comparison with that of the 
steel. 

For reasons of symmetry, only one-quarter of the section need be 
considered when calculating the temperature distribution in a cross 
section. As shown in Fig. 2 in an x-y coordinate system the repre

sentative point of the protection PmJ, for the region Rmn has the 
coordinates x = (m — 1) A£A/2 and y = (n - 1) A£A/2. The points 
m = 1 and n = 1 coincide with the origin x = 0 and y = 0. m increases 
in the x direction and attains a value m = M at the boundary A — B, 
where as n increases in the y direction and has a value n = N at the 
boundary B — C. As can be seen in the figure, only those points of the 
x-y plane are defined for which (m + n) is an odd number. 

To calculate the temperature history of the insulation and steel, 
a heat equation is written for each elementary region for the times yAi 
where j = 0,1,2 .. . and At is an appropriate time increment. With 
the aid of these equations, the temperature of each region can be 
successively evaluated for any time t= (j + 1) At if the temperature 
at the time t = j&t is known. 

It should be mentioned that the applicability of the method to be 
described is not limited to protected steel columns. It can be applied 
to any assembly consisting of a central core of a well stirred material 
or a material with relatively high thermal conductivity, surrounded 
by a rectangular envelope of much lower conductivity, which is ex
posed to heating on all four sides. By removing the core and extending 
the insulation to the center of the section, it can also be used for the 
calculation of the temperature history of monolithic columns or 
beams. 

Moisture movement is not taken into account in the model. The 
effect of moisture on the temperature rise of steel is in general small, 
and in most cases negligible. Under normal conditions, usually as
sumed to be an environment of about 50 percent relative humidity 
and 20°C temperature, most inorganic building materials do not hold 
mpre than 1 percent moisture by volume. For such materials the effect 
of moisture on the time to reach the critical steel temperature is a few 
percent and not significant. Concretes, however, may hold 3-6 percent 
of moisture. Experiments and calculations, using a model in which 
it is assumed that the moisture moves to the inner surface of the in
sulation and evaporates at this surface, indicate that the predicted 
failure times will be on the safe side by about 10 to 15 percent [2]. It 
is possible to make a correction for the effect of moisture using a 
semi-empirical method. For application in practice, however, a safety 
margin of 10 to 15 percent is acceptable. It is likely that for concretes 
the main deviations from calculated results will in practice be caused 
by the variability of the thermal properties of the concrete, since this 
is normally a mixture of cement, sand, and gravel of various shape, 
size, and composition. Spalling of the concrete may also significantly 
affect the fire performance of a column. 

Equations for the Outer Boundary of Insulation 
In a fire, heat is transferred from the fire to an exposed object by 

convection and radiation. According to existing information the heat 

. N o m e n c l a t u r e . 

a - coefficient 
A = area of the inner surface of the insula

tion 
b = coefficient 
c = specific heat; without subscript: specific 

heat of insulation 
d = coefficient 
D = thickness of insulation 

h = — 
c„W 

j = = 0, 1, 2,. . . . 
k = thermal conductivity of insulation 
K = number of mesh points in and on the 

insulation along the x-axis 
( = distance in insulation 
L = number of mesh points in and on the in

sulation along the y-axis 

m = = 1,2, 3, 
M = number of mesh points along the x-

axis 
n = = 1,2, 3, . . . . 
N = number of mesh points along the y-

l> = density of insulation 
a = Stefan-Boltzmann constant 

axis 
P = point 
Q = rate of heat generation or absorption 
R = elementary region 
t = time 
T = temperature 
W = mass of steel core 
x = coordinate 
y = coordinate 
a = fraction 
0 = roots of fitgffD = h 
A = increment 
A£ = mesh width 
t - emissivity 
7 = emissivity factor 

Subscripts 

a = average 
/ = of the fire 
(' = of the insulation 
k = = 1, 2, 3 
m, M = at a mesh point in the mth or Mth 

column, respectively 
n, N = at a mesh point in the nth or A?th row, 

respectively 
0 = initial 
r = pertaining to radiation 
s = of the steel core 

Superscript 
j = at t = jAt 
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transferred in a typical case by convection to an object is less than 10 
percent of the radiative heat [3]. It is known that above a certain level 
of the coefficient of heat transfer, which is easily obtained in fires and 
furnaces, the temperature of the surface of the exposed object will be 
very close to the temperature of the environment [5,12]. In this region 
changes of the order of 10 percent will have little effect on the surface 
temperature and thus on the temperature in the exposed object. 
Therefore, to simplify the heat transfer model, the convective heat 
transfer will be neglected in this study. 

Furthermore, it will be assumed that the radiative heat transfer to 
the exposed object is approximately that of a black body. As explained 
subsequently, this assumption will cause only a small error. 

In an actual fire, heat is received from luminous flames, which have 
a high emissivity. If the thickness of the flames is sufficient, the 
emissivity may reach values of about 0.9 or higher, and thus ap
proaches that of a black body. For the same reason as in the case of 
convection, an error of the order of 10 percent in the radiative heat 
transfer will have little effect on the surface temperatures of the ex
posed object if the heat transfer is high. The high heat transfer from 
fires is simulated in furnaces by making them large, so that the flames 
have sufficient thickness, and by selecting furnace wall materials that 
produce wall temperatures close to the flame temperature. In the 
present study a column is considered that is exposed to fire on four 
sides. It will be assumed that the fire temperature follows a standard 
temperature-time relation according to that specified in ASTM 
El 19-73 [4], although the calculation procedure is valid for any other 
temperature-time relation. Several analytical expressions that ap
proximately describe this curve exist [5, 6]. Here the following ex
pression will be used: 

T[ = T0 + 1200 - 550 exp (-0M) 

+200 exp (-3.0t) - 850 exp (-12.0t) (1) 

where Tf and T0 are, respectively, the fire and ambient temperature 
in degrees centigrade and t is the time after the start of the fire in 
hours. This form, consisting of exponential functions, has been chosen 
because of the advantage that when used as a boundary condition the 
heat transfer equations are analytically solvable. 

The heat transmitted from the fire to an elementary surface region 
RM,,I along the boundary A-B (see Fig. 2) during the period jM < t 
«S 0 + 1) A£ for a unit height of the column can be written as 

V2 A£«,- [(TfJ + 273)'1 - (TM.J + 273)'1] At (2) 

From the region RM,n heat is transferred by conduction to the two 
neighboring regions, fl(ju-n,(„-i) and R(M-\).(n+\)- This heat can be 
given as 

(k(M-l)An-l)1 + kM,„J\ 
1 l l ' M . n ' _ ' l M - | ) , t o - l / ) i i l 

+ ( " j U M.nJ ~ J al-D.(/l+l/) At (3) 

During exposure heat may be generated in the protecting material, 
because of decomposition of the material. It is also possible that heat 
is absorbed because of dehydration or transformation processes in 
the material. If Q is the rate of heat generation (+) or absorption (—) 
per unit volume, then the heat gain or loss in an elementary region 
RM,H because of this heat generation or absorption is for a time period 
At 

1/2(A£)2 QAt (4) 

The sensible heat absorbed by the element in this period is 
1/2(A{F (pc)MM' ( 7 W + 1 - TM,„') (5) 

By adding all heat gains and losses given by equations (2)-(5), the 
following heat balance for an elementary region RM,„ is obtained: 

1/2(A£)2 (pc)M,nJ (TM,J+> - TM,nJ) 

= V2 A£«,- [(TfJ + 273)4 - (TM,n> + 273)4] At 

_ /k(M~l),U,-l)J + kM,nJ\ (T j rp A , , 

/fe(M-l),(n+l)J + kM.n'\ ,rp i rr ;N A, 
- / I (I M,n' ~ * (M- I ).<"+ ir) At 

+ 1/2(A£)2 QAt (6) 

The temperature TM,n
i+1 at the time 0 + l)At for an elementary 

region RM,„ can be solved for from the equation (6). For an elementary 
region Rm_N along the boundary B - C (Fig. 2) the temperature 
T„tiN'+l can be derived in a similar manner. 

In equation (6) the quantities p, c, k, t,, and Q are assumed to be 
known. If the temperatures in all elementary regions at the time t = 
7 At are known, the temperatures in these regions at the time t = (;' 
+ 1) At can be calculated from these equations. By using the newly 
calculated temperatures of the various regions as initial temperature 
and repeating the calculation process, the temperatures at the times 
0' + 2) At, 0 + 3) At, etc., can be derived for each elementary re
gion. 

E q u a t i o n s for the Ins ide of Insu la t ion 
In the same way as for elementary regions at the outer boundary, 

the temperatures in the insulation can be calculated by writing heat 
balance equations for the inside elementary regions. For a region /?,„„ 
represented by point P„v„ the heat balance equation for a unit height 
of the column and a time period At is 

(AO2 (pc),n,„J (T,„,nJ
+i - T,„,„J) 

_ f / fe(m-l) , ( , - i r / + fem,,A j _ T j , 
= | ( - / U ( m - l U / i - i r 'm,nJ) 

i /k(m+lUn-W' + km,„\ . . 
+ ( I U (m+l>.(n-ir — I m,n ) 

i /^(" ' -1) . (" + » J + k»'.nJ\ frr j rp /> 
+ ( ~ I U (m-l>.</i+lr ~ lm.n') 

_i_ /fe("'-H).("+!)-' + km,„'\ • ] 
+ ( ~ I \1 (m+1),(«+ir _ lmjiJ) At 

+ QiAtfAt (7) 

The temperature T m „ J + I of an inside elementary region Rmjl at the 
time {j + 1) At can be solved for from equation (7). 

E q u a t i o n s for the I n n e r B o u n d a r y of Insu la t ion and 
for the S t e e l Core 

To describe the heat transfer along the inner boundary of the in
sulation a model presented in a previous paper [2] will be used. As 
shown in Fig. 1, a certain fraction a of the inner surface of the insu
lation of a protected steel column is usually in direct contact with the 
steel core, and a fraction (1 —,«) is separated from the steel core by 
an air gap. The mechanism of heat transfer along the areas of contact 
is conduction. Heat is transferred through the air gap by radiation 
and convection. Because the radiative heat transfer is predominant 
at temperatures normally found in protected steel columns during 
fire exposure, the convective heat transfer is not taken into account. 
It can be shown by estimating the maximum steel temperature rise 
that can be caused by free convection that, for columns normally met 
with in practice, the heat transferred to the steel by convection is small 
in comparison with that by conduction and radiation. For example, 
for a steel column that has been tested (Fig. 6), it can be derived that 
the temperature rise of the steel in one hour because of convective 
heating is less than 2°C. This is a small fraction of the temperature 
rise of about 350°C in one hour measured during the test. In the 
derivation it has been assumed that the heat transfer by convection 
resembles that of a vertical plate in air. Because in reality the top and 
bottom of the column are closed, this model overestimates the con
vective heat transfer. The air temperature has been assumed to be 
10°C higher than the steel temperature at any time, which is ap
proximately the maximum temperature difference observed during 
tests in the space enclosed by the insulation. The area of the steel 
exposed to heating by convection is 0.5 m2 and the mass of the steel 
73 kg/m length. 
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C = CONDUCTIVE HEAT FLUX 

R = RADIATIVE HEAT FLUX 

Fig. 3 Model of mechanism of heat transfer for a triangular elementary region 
of the inner surface of insulation 

The model to describe the mechanism of heat transfer at triangular 
elementary regions of the inner surface of the insulation is shown in 
Fig. 3. In this model the total mass of the steel core is divided into a 
number of elementary pieces equal to the number of elementary re
gions along the inner surface of the insulation, i.e., into 2(N — L + M 
— K — 2) pieces. It is assumed that a fraction a of each elementary 
mass is in direct contact with the adjacent elementary insulation 
surface, and thus receives heat from the insulation by conduction, 
while a fraction (1 — «) of its mass is at some distance from the ele
mentary surface and receives heat by radiation. By varying « from 
0 to 1 all possible practical conditions, including pure radiative and 
pure conductive heat transfer to the steel core, can be simulated. If 
the steel is everywhere in contact with the insulation, for example, 
in the case of tubular steel columns, a = 1. If there is no contact, as 
in the case of a wall built around the steel without touching it, a = 0. 
In the case of the column shown in Fig. I, a is approximately 0.5. In 
practice the shape and size of the columns are known and a can be 
estimated, but considering the worst case of a = 1 is probably suffi
cient. 

Along the boundary D - E (see Fig. 2), the radiative heat trans
ferred to the steel core from the elementary region R(M-K+ I ),n through 
a fraction (f — a) of the inner surface of the insulation bounding this 
region is during the period jAt < t < (j + 1) At 

(1-ff)-v/2A£<r? 

X [ ( r l M - K + n , „ J + 2 7 3 y ' - ( 7 V + 273)4] At (8) 

In the same period heat is,transferred by conduction from the 
neighboring regions to each triangular elementary region R(M~K+ I ).n 
at the inner surface of the insulation, and to each fraction of the ele
mentary steel masses that are in contact with the inner insulation 
surface. Since, by assumption, steel is regarded as a perfect conductor, 
the temperatures of those fractions of elementary steel masses that 
are in direct contact with the insulation surface are identical to those 
of the adjacent elementary regions of insulation. Consequently, their 
presence can be taken into account by adding their heat capacities 
to those of the adjacent elementary insulation regions. 

By adding all heat gains and losses, the following heat balance 
equation can be written for a period; At < t < (j: + 1) At for each tri
angular elementary region R(M-K+I),H and each fraction of steel at
tached to it: 

W{cs)iM-K+l),nJ 

l /2(A£)2(pc)(A,-, ( + i) , , /+: 
N -L + M-K-

X ( T ( M - K + l ) , n
J ' + 1 - T ( M - K + l ) . n

; ) 

/k(M-K + 2)A,i-l)J + k(M-> | /«(M-ft + 2U»- * H l V ^ 

X (T[M-K+->)An~\)' ~ T(M-K+l).nJ) 

/fe(M-ft+2),(n+lr' + fe(M-K+ll,/A 

X ((TM-K + 2).(n+l)j - TiM-K+l).n') + (1 ~ «) Vl A£ff€ 

X [(TM-K+nj,J + 273)4 - ( 7 V + 273)'1] + 1/2(A£)- Q\ At (9) 

where (c\ )(«-/<+n,,,-7 is the specific heat of steel at a temperature of 

T{M-K+\).nJ-

The temperature Tw-K+i),n'+1 ° ' a n elementary region 
R{M~K+\),n with attached steel fraction, along the boundary D — E 
at the time 0 + f)At, can be found by solving equation (9) for this 
temperature. For the boundary E — F (Fig. 2) the temperature 
Tm.(N-L+1 ) J + ' of an elementary region RMAN~I,+ I I with attached steel 
fraction can be derived in a similar manner. 

One of the parameters still unknown in equation 9 is the steel 
temperature Tsr' of that part of the steel that receives heat by ra
diation. Although the model assumes that the steel temperature is 
uniform, evaluation of Tsr> is necessary, as an intermediate step in 
the procedure of calculation of the uniform steel temperature. This 
steel temperature is obtained later by adding all enthalpies of the steel 
elements, part of which are heated by radiation and part by conduc
tion, and dividing the sum by the heat capacity of the steel. 

T,,J can be derived in a similar way to the temperatures of the el
ementary regions in the insulation by writing a heat balance for the 
steel. From such a heat balance it follows that the temperature T,,.^1 

at the time (/ + 1) At is given by 

7V'+I = 7 V + 
? r N-i. 
- • £ " 

L/, = :),!•.... 

4 \ / | A£o-At 

csr> W 

M-K 
+ £ (Tm,(/v-L+i/ + 273)'1 

m = 3,fl... 
N-L+M-K 

1\M-K+ i),,-' + 273)' 

(TV + 273) 3)>] (10) 

Although the temperature field in the protection may be of interest 
in other cases, e.g., if the protection is made of concrete and contrib
utes to carrying the loading, normally the temperature of the steel core 
is of primary importance. Because this temperature often determines 
the strength of the steel, knowledge of it is essential for predicting the 
time of collapse of building components. 

The steel core temperature can be derived by equating the enthalpy 
of the steel core to that of the sum of the enthalpies of all steel pieces 
constituting the steel core. This results in the following equation: 

/ -7V+ 1 2« r N~L /•' '•(«-«+1,y+l 

I c,d7' = £ c\dT 
J-/V+1 N -L + M - K - 2 L„=:TT, Jvv+i L + M-K- 2 

M-K \4-K /.7•„,,(,v-;.+ |^J , l T 
£ csdT 

=:i.r.... Jrj+> J 

(11) 

where 

T , ' + l = the steel core temperature at the time (j + 1) At 

c, = the specific heat of steel 

According to available data [7,8], the specific heat of steel may be 
given as a function of its temperature T by the expression 

C, = 440 + 0.478T (12) 

where c, is in J/kg°C and T in °C. 

Substitution of c, in equation (11) and integrating gives for the steel 
core temperature 
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TV+i = 
-b + Vb2-4ad 600 

where 

2a 

a = 0.239 

b = 220 

» • ( ^ 

' TV - L + M - X - 2 l„=.v>... 

(13) 

X [220 T, W-zc+n J
+1 + 0.239 (71,, ) . n j + l ) * ] 

+ £ [220 Tm,W-L+uJ
+,+ 0.239 (T,„,W-,.+1r'+1)2] 

+ a [220 7 V + 1 + 0.239 (7V + 1 ) 2 ] 

Auxiliary Equations 
To calculate the temperatures of the elementary regions along the 

lines of symmetry A — D and F — C, it is necessary to know the tem
peratures of the regions P„,,i and P\,n. These temperatures are ob
tained by equating the temperatures of symmetrical points. Thus 
along line A—D: 

Tmy+l = r,„y+ 

and along line F — C: 

„>+' 

(14) 

(15) 

With the aid of equations (6), (7), (9), (10), and (13)-(15), it is now 
possible to calculate the temperature distribution in the insulation, 
on its boundaries, and the temperature of the steel core for any (j + 
1) M time level, if the temperatures at the jAt level are known. Ini
tially, only the temperatures at the t = 0 level, which are usually equal 
to room temperature, are known. Starting from these temperatures, 
the temperature history of the protection and the steel core can be 
determined up to any specified time or temperature level with the aid 
of the aforementioned equations. 

It is known that the solutions are not stable for all values of the 
mesh width A£ and time increment At. In order to insure that any 
error existing in the solution at some time level will not be amplified 
in the subsequent calculations, a stability criterion has to be satisfied 
which for a selected value of A£ limits the maximum value of At [9]. 
For fire-exposed columns and beams the criterion of stability is 
usually most restrictive along the boundary A — B between fire and 
insulation. 

Analytical Solution 
In previous studies [2, 10], calculated results were compared with 

EXPERIMENTAL 

- - CALCULATED 

J_ -L 
40 60 80 100 120 140 160 

TIME, MINUTES 

Fig. 5 Steel temperature as a function of time (size steel core: 20 X 20 cm; 
insulation of heavy clay brick) 

experimental results for a number of steel sizes and protecting ma
terials. The comparisons showed that for these cases the maximum 
deviation between calculated and experimental temperatures was 
about 15 percent, which may be regarded as reasonably accurate in 
the field of fire engineering. A few of the comparisons are shown in 
Figs. 4-6. In Figs. 4 and 5 measured and calculated steel temperatures 
are compared for protected steel columns that were exposed to heating 
at temperatures according to the standard temperature-time relation 
given by equation (1). In Fig. 6 the comparison is for a column that 
was exposed to heating according to a temperature-time curve that 
closely resembles an actual fire temperature curve. To obtain more 
information on the accuracy of the numerical method, the results 
obtained by the method described in this paper will also be compared 
with those obtained from analytical solutions of the equations that 
determine the steel temperature. For this purpose a protected steel 
column will be considered of which the steel is everywhere in contact 
with the insulation (a = 1). If certain assumptions are satisfied, it is 
possible to give an analytical solution of these equations. The as
sumptions are 

(a) The heat that passes the insulating casing is immediately and 
uniformly distributed over the steel; 

(o) The thermal capacity of the air cavity (if any) enclosed by the 
casing is negligible in relation to that of the steel; 

(c) The insulation is so thin that the difference in insulation 
thickness at the corners can be neglected and it is permissible to 
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Fig. 4 Steel temperature as a function of time (size steel core: 15 X 15 cm; 

insulation of insulating fire brick) 

60 80 100 

TIME, MINUTES 

Fig. 6 Steel and furnace temperature as a function of time (size steel core: 
25 X 25 cm; insulation of vermiculite board) 
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consider a heat flow through the insulation over an area equal to the 
area of the interface between the insulating material and the contents; 
and 

(d) The material constants are invariable or can be replaced by 
a constant average value. 

The heat transfer equation and boundary and initial conditions that 
determine the temperature in the insulation and steel are as fol
lows: 

The temperature of the insulation T satisfies the differential 
equation for thermal conduction: 

d T _ d2T 

"C dt ~ ~dfi 
(16) 

At the exposed surface of the insulation, the temperature is as
sumed to follow the fire temperature course given by equation (1). 

At the interface between insulation and steel, the heat flow per unit 
time to the steel is equal to the increase in enthalpy of the steel. Hence, 
for i = D 

-kA — = c , W — 
ae at 

(17) 

Initially, the temperature of the column is equal to the room tem
perature, so that T = To for t = 0. 

The method of solving the foregoing equations is given in reference 
[11]. In principle, this method uses the solution of equations (16) and 
(17) for a constant fire temperature [12] as starting point. With the 
aid of Duhamel's theorem, the solution for varying fire temperature 
is derived. For a temperature rise at the exposed surface that follows 
the temperature-time relation given by equation (1), the solution for 
the steel temperature T„ is as follows: 

T, - T„ = 1200 - 1200 £ /(ft,.) exp ( -«f tV) 
* = i 

(exp (-0.6f) - exp (-(.-ftV)) 
((ft,-2 

-550 E / f a ) , W 

A-=I i t p V - 0 . 6 

+200 E /(ft,.) — if*" (exp ( -3 .00 - exp (-K0ht)) 
* = ! KPA _ - 3.0 

"850 ZfWk) f^-

where 

(exp (-12.00 - exp (-(cftV)) (18) 

k_ 

pc 

ft.. = roots of IJtgtSD = h 

pcA 
h=-

/(ft) : 
2(ft,'j + ;i^)sinft,.D 

ft,- [£(ft,- + h*) + h] 

For equation (18) Ts and To are in degrees centigrade, ( in hours, and 
K in square meters per hour. 

Compar i son of R e s u l t s of N u m e r i c a l and A n a l y t i c a l 
M e t h o d 

For comparison a column model and exposure conditions were 
chosen that resembled as closely as possible those assumed in the 
analytical method. To approach one-dimensional heat transfer 
through the insulation it should be thin in comparison with the inner 
perimeter of the cross section of the insulation. In this case an insu
lation thickness of 1 cm and two steel core sizes of 10 X 10 cm and 15 
X 15 cm cross section were selected. To obtain temperatures on the 
fire-exposed surface that closely follow the fire temperature course, 
it is essential that the thermal properties of the insulation be such that 
the product k/pic; be low [12]. A combination that was found to pro
duce surface temperatures that were reasonably close to the fire 
temperature (see Fig. 7) and did not give rise to extremely long cal
culation times was k; = 50 J/mh °C; PiCi = 3 X 10fi J/m : ! °C. 

To make conditions in the numerical method as close as possible 
to those in the analytical method, it was assumed that the emissivity 
of both the fire and insulation was one, and that the mechanism of 
heat transfer from the insulation to the steel core was conduction. For 
the mass of the steel a value of 20 kg/m column length was chosen and 
for the specific heat a value equal to that given by equation (17) for 
a temperature of 20°C. 

Calculated results are given in the Tables 1 and 2. In Table 1 the 
steel temperatures at various times are shown for a 10 X 10-cm steel 
column insulated by a 1-cm thick protection. Column No. 1 of the 
Table gives the temperatures calculated by the analytical method, 
and columns 2, 3, and 4 give the average steel temperatures calculated 
by the numerical method for various mesh widths. The temperatures 
in column No. 2 are for a 1-cm thick insulation subdivided into five 
layers, those in column No. 2 are for subdivision into seven layers, and 
those in column No. 3 into nine layers. 

It is seen that the differences in temperature between the analytical 
and numerical method reduce with an increase in the number of 
layers, but for more than seven layers the reduction is small. Irre
spective of the number of layers, there is still a difference between the 
analytical and numerical results, which for higher steel temperatures 
amounts to several degrees. It is likely that these differences are 
caused by the higher temperatures at the corners of the insulation, 
as can be seen in Fig. 4. Whereas the heat transfer in the numerical 
model is two dimensional, the analytical model assumes one dimen
sional heat transfer through the insulation. By decreasing the ratio 
of the thickness of insulation to the column cross-section size, the 
influence of the corners on the steel temperature can be reduced. In 
Table 2 the calculated temperatures are shown for a 15 X 15-cm col
umn. 

As can be seen in columns No. 1 and 3 of Table 2, the differences 
between the results of the analytical and numerical methods for this 
larger column reduce to less than 2°C over the temperature range of 
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Fig. 7 Typical temperature distribution in an one-eighth section of the in
sulation of a steel column (size steel core: 10 X 10 cm; insulation thickness: 
1 cm; exposure time: 2 hours) 
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Table 1 Steel temperature (C°) of 10- X 10-cm column 

TIMU 

(Min) 

0 
30 
60 
90 

120 
150 
180 
2!0 
240 
270 
300 

ANALYTICAL 

MLTI101) 

(No.l) 

20.0 
21.9 
47.2 
9 3 . S 

148.8 
207.8 
267.4 
326.4 
383.7 
4 38.9 
491.4 

NUMERICAL METHOD 

5 LAY i: l!S 

( N o . 2 ) 

2 0 . 0 
2 4 . 1 
5 1 . 9 
98.9 

155.0 
214.9 
275.7 
33S.8 
394 .2 
450.2 
503.6 

7 LAYERS 

( N o . 3 ) 

2 0 . 0 
2 2 . 7 
4 8 . 8 
95.9 

152.4 
212.8 
274.1 
334.6 
393.4 
449.7 
503.4 

9 LAYERS 

(No.4) 

20.0 
22.3 
47.8 
94 .8 

151.6 
212.1 
273.3 
334.2 
39 3.1 
449.6 

20 to approximately 500°C. In terms of the time to reach a specific 
steel temperature the differences are less than 1 min. In the field of 
fire resistance of building components such an error is negligible. Even 
if the faster method is used by dividing the insulation into five layers 
instead of seven, the errors are still small, as shown in column No. 2 
of Table 2. 

Conclusion 
In the past the fire performance of building components could be 

determined only by experiment. Recent developments, in particular 
development of numerical techniques and better knowledge of ma
terial properties at elevated temperatures, have made it possible to 
solve many fire performance problems by calculation. Calculation has 
the advantage that it is far less expensive and time consuming than 
performance tests. 

In this study a procedure based on a finite difference method is 
described for calculating the temperature history of fire-exposed 
protected steel columns with rectangular cross section and heat 
generation or absorption in the insulation. Comparison with results 
of tests and those obtained from an analytical solution of the heat 
transfer equations indicates that the accuracy is adequate for fire 
engineering purposes. 

The method is also suitable for the calculation of temperatures in 
monolithic building components such as solid concrete columns, 
beams, and walls. It can also be used for the calculation of tempera
tures of any system in which a perfect conductor or well stirred fluid 
is enclosed in an encasement, for example, water-filled hollow steel 
columns or beams, and exposed to a radiative heat source of varying 
temperature. 

This paper is a contribution from the Division of Building Research, 

Table 2 Steel temperature (C°) of 15- X 15-cm column 

TIME 

(Min) 

0 
30 
60 
90 

120 
150 
180 
210 
240 
255 

ANALYTICAL 

METHOD 

( N o . l ) 

20 .0 
22 .8 
5 6 . 7 

116 .7 
186,3 
258 .6 
330. 2 
399 P 
4 6 6 . 2 
4 9 7 . 9 

NUMERICAL l iE' l imo 

5 LAYERS 

(No .2 ) 

20. C 
25.5 
62 .2 

122 .2 
191 .8 
264.2 
336 .3 
4 0 6 . 2 
4 7 2 . 8 
504 .8 

7 LAYERS 

(No .3 ) 

20 .0 
23 .7 
57 .9 

117.3 
186 .7 
2 5 9 . 1 
331.2 
4 0 1 . 0 
4 6 7 . 7 
4 9 9 . 7 

National Research Council of Canada, and is published with the ap
proval of the Director of the Division. 
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Effect of Tilt and Horizontal 
Aspect Ratio on Natural 
Convection in a Rectangular 
Honeycomb 

J. N. Arnold1, D. K. Edwards,1 and I. Cation1 

Introduction 
For a horizontal solar heat collector it has been shown [1, 2]2 that 

natural convection can be effectively suppressed by placing a prop
erly-sized low-aspect-ratio honeycomb of thin, poorly conducting 
material between the absorber plate and coverglass. Lalude and 
Buchberg [3] performed an optimization study and concluded that 
best cost-effectiveness for a 80°C collection temperature was to be 
obtained with a cell having an aspect ratio d/L between 0.2 and 0.25 
and a W/d of 6. At the time of their study little was known about the 
effect of tilt 8 and horizontal aspect ratio W/L on natural convection. 
As shown in Fig. 1, L is the length between the heated collector surface 
and the cooled glass cover, i.e., the thickness or depth of the honey
comb core; d is the up-slope distance between tilted sides of the 
honeycomb; and W is the horizontal or East-West distance between 
vertical ends of the rectangular honeycomb. The present work was 
carried out to obtain the effect of tilt 6 and horizontal aspect ratio W/L 
on natural convection in a rectangular honeycomb with two of the 
three sizes (d and L) fixed but with various W dimensions. 

Apparatus and Procedure 
The experimental apparatus and procedure employed is essentially 

that of Sun and Edwards [4,5]. Gasketed seals were added to the ends 
of the apparatus to permit tilt to any desired angle [6,7]. In this work 
three sets of multicelled rectangular honeycombs were used; dimen
sions are shown in Table 1. The cell walls were made with varnished 
paperboard 0.35-mm thick. The three honeycombs had nearly the 
same height and aspect ratio, but different values of horizontal aspect 
ratio. 

The ratio of the heat flow in the heated-from-below position to that 
in the heated-from-above position is the Nusselt number 

Nu 
feeff 

k 

_qL_ 

kAT (1) 

1 Energy and Kinetics Department, School of Engineering, UCLA. Mems. 
ASME. 

2 Numbers in brackets designate References at end of technical note. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division September 14,1976. 

where q is the conductive-convective heat flux, k is the thermal con
ductivity of the fluid, and AT is the temperature difference between 
the two copper plates enclosing the fluid. Minor corrections were made 
in the computerized data reduction program for wall conduction and 
departures from strict steady-state operation. Details of the data 
reduction procedure and an error analysis are contained in references 
[5,7]. 

Nusselt number was determined from the data as a function of 
Rayleigh number based on total length between heated and cooled 
plates 

S0ATL3 

Ra,_ = — = Rad(L/d)4 
(2) 

where g is the gravitational acceleration, 0 volume expansion coeffi
cient, K is thermal diffusivity, and v is kinematic viscosity. Under the 
assumption of constant transport properties, small variation in den
sity, and low inertia effects (or high Prandtl number), the equations 
of motion indicate that Nusselt number depends upon Rayleigh 
number. Within these constraints any high Prandtl number fluid can 
be used for experimental purposes. Silicone oils were chosen as the 
conductive-convective medium. Measurements made with an in-
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Table 1 Dimensions of the rectangular honeycombs 

HoneycombW 

Rl 
R% 
R3 

Aspect 
rat io 
(d/L) 

0.253 
0.270 
0 .255 

Horizontal 
aspect ra t io 

(W/L) 
0.51 
1.13 
2.15 

Height 
(L) 

18.95 m m 
18.42 m m 
18.82 m m 

(«) Rectangular honeycombs .Rl and R3 are identical with 
those of reference [ 4 ] . 

Table 2 Effect of angle of inclination on Rayleigh 
number for Nu = 1.1 

Rayleigh number at Nu = 1.1 
Angle 6 Rl R2 R3 

1 8 0 d e g ( N u = l ) 29 ,000 12 ,000 12 ,500 
150 deg 20,000 11 ,500 11 ,500 
135 deg 12 ,000 9800 9800 
120 deg 9500 9500 9500 

90 deg 8500 8500 8500 

frared-opaque fluid will give an upper limit on convective transfer, 
since an added stabilizing effect of wall thermal radiation exchange 
occurs in an infrared-transparent fluid [8]. 

Results and Discussion 
Figs. 2(a)-2(e) are plots of the dimensionless variables, Nusselt 

versus Rayleigh number, for the three rectangular honeycombs 
studied, Rl, R2, and R3, respectively. Sun's unpublished data [5] cover 
the conditions for curves a, b, and c. The data are not plotted here, 
because they are not felt to be as self-consistent and reliable as the 
new data shown. Perhaps the most serious discrepancy between the 
present data and older unpublished data is an indicated critical 
Rayleigh number of 36,400 for honeycomb Rl at 8 = 180 deg versus 
29,000 found in the present study. In regard to tilt, the figures show 
that at low angles of inclination from the vertical (8 = 90 deg), there 
is feeble motion that increases slowly with Rayleigh number up to 
Rayleigh numbers of at least 20,000. At angles 0 = 150 and 135 deg the 
convection grows even more slowly with increasing Rayleigh number 
up to a point at which there is a transition, presumably from a two-
dimensional creeping motion to a cellular convection. The 6 = 120 deg 
curves also display such a transition, but at larger values of Rayleigh 
number. For 8 = 180 deg (horizontal, heated from below) there is only 
conduction until the critical value of Rayleigh number is reached, at 
which point a cellular convection initiates and makes Nusselt number 

Table 3 Effect of angle of inclination on Rayleigh 
Number for Nu = 1.25 
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Angle 6 
180 deg 
150 deg 
135 deg 
120 deg 

90 deg 

Rayleigh number at Nu = 
Rl R2 

38,000 
37,500 
35,000 
27,500 
26,000 

18,500 
20,000 
22,000 
24,000 
26,000 

= 1.25 
R3 

18,000 
19,500 
21,500 
25,000 
26,000 

10 2 4 6 10 2 4 ,6 10 

RAYLEIGH NUMBER, RaL 

Fig. 2 Nusselt number versus Rayleigh number at indicated values of 8 

rise very rapidly with further increase in Rayleigh number. 
With regard to horizontal aspect ratio, it is seen that there are only 

small differences between honeycombs Rl and R3. This fact indicates 
that there is little vertical end wall effect for horizontal aspect ratios 
greater than unity. Comparing core Rl with R2 and A3 one sees that 
at 8 = 90 deg all three honeycombs plot on top of each other. As the 
angle of inclination is increased from 8 = 90 deg, the R2 and R3 data 
depart from the if 1 curves at successively lower Rayleigh numbers. 
This behavior shows the expected result that honeycombs with small 
horizontal aspect ratios are more effective in suppressing cellular 
convection at the higher Rayleigh numbers. 

Each set of data shows that as the honeycomb is inclined, a Nusselt 
number of 1.1 occurs at successively lower values of Rayleigh number. 
Table 2 displays these values of Rayleigh number. Looking at the table 
one can see that, as the rectangular honeycombs are rotated from the 
horizontal (8 = 180 deg), the Rayleigh numbers at Nu = 1.1 approach 
the same value for all three horizontal aspect ratios. This behavior 
indicates that the vertical end walls have little if any effect for values 
of Nusselt number close to initiation and angles of 8 = 120 deg and 
below. The two cells, R2 and R3, show little effect from the end walls 
on initiation even at angles of 120-180 deg. The difference seen is 
likely due to a minor L/d effect, rather than a W/L effect. Table 2 
shows that for angles of inclination of 8 = 135 deg and above there is 
a pronounced increase in critical Rayleigh number in honeycomb core 
Rl due to the small value of W/L. 

Table 3 shows the values of Rayleigh number at a Nusselt number 
equal to 1.25, a value probably quite acceptable to a solar collector 
designer. In this case the effect of tilt is much different than that for 
Nu = 1.1. Again the R2 and R3 honeycombs are very close to each 
other for each of the five angles. Any difference is likely due to a minor 
L/d effect. The marked difference is that Rayleigh number increases 
consistently as the angle of inclination is decreased from 6 = 180 to 
90 deg. In addition there is a pronounced horizontal aspect ratio effect 
seen with honeycomb Rl. The behavior indicates that, as the cell is 
rotated from the horizontal to the vertical position, the end wall effect 
is decreased until the honeycomb acts as if the end walls were not 
there. 

Buchberg, et al. [9] give a review of natural convection heat transfer 
related to solar collector design. At the time of that review there were 
only limited experimental data indicating that honeycombs could act 
to reduce greatly natural convection heat transfer even when tilted. 
Charters and Peterson [10] questioned whether honeycombs could 
do so when tilted. Cane, et al. [11] measured combined convection and 
radiation through air for a square cell of aspect ratio 0.33, and Ed
wards, et al. [12] had data measured with silicone oil for a rectangular 
cell (R3 as described here) at 8 = 150 deg only. The present more 
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complete data, particularly those in Table 3, add support to the belief 
that a honeycomb designed to suppress convection at 8 = 180 deg will 
serve well to reduce it to an acceptably low level even when tilted. 

The designer may wonder how honeycombs of other aspect ratios 
will perform. The theoretical results of Catton [13, 14] predict the 
onset of convection for cells of arbitrary aspect ratio d/L and hori
zontal aspect ratio W/L for values between 0.125 and 12 and infinite 
Prandtl number, and for 8 = 180 deg. The theoretically-predicted 
result for a square cell with L/d = 3 is RaCr - 0.7 X 105 for infinite Pr 
[13]. It seems to be in rough agreement with the experimental results 
of Heitz and Westwater [15], Racr = 106 for water (Pr = 6 to 11), and 
Cane, et al. [11], Racr = 1.3 X 105 for air (Pr = 0.7) with a radiation 
effect. For low aspect ratios theory indicates an (L/d)4 dependence, 
and the experimental results agree approximately [15]. Catton pre
dicts Racr = 2.85 X 104,1.20 X 105, and 1.10 X 104 for d/L = 0.25, and 
W/L = 0.5,1, and 2, respectively versus the present results of Racr = 
2.9 X 104,1.2 X 104, and 1.25 X 104 for 6 = 180 deg and values of d/L 
and W/L that correspond approximately. It thus appears that aspect 
ratio will have a strong influence upon critical Rayleigh number, ap
proaching (L/d)4 for small d/L, but as confirmed here horizontal as
pect ratio W/L has a weak effect when it is larger than unity. 

In the case of large d/L the effect of Prandtl number being 0.7 in
stead of infinity is apparently to lower Nusselt number by approxi
mately 13 percent [9]. Of considerable more importance than a minor 
Prandtl number dependency is the strong effect of radiation heat 
transfer through air in raising critical Rayleigh number [8]. For cells 
R2 and R3 containing air at 8 = 180 deg, Edwards and Sun [16] re
ported Racr = 2.78 X 104 and 2.60 X 104 respectively, twice as great 
as measured here with silicone oil. The radiation increases the heat 
loss by conduction from a thermal perturbation described in the 
discussion of reference [15] by radiatively cooling the wall adjacent 
to hot fluid and vice versa. 

Summary and Conclusions 
Heat transfer in rectangular honeycombs with an aspect ratio of 

approximately 0.25 but with three different horizontal aspect ratios 
was reported. Little effect of horizontal aspect ratio was found for 
values greater than unity. It was also found that at 8 = 90 deg there 
was no apparent effect of horizontal aspect ratio down to values 0.5 
and that heat transfer depended only upon the aspect ratio. Con
versely at near-horizontal orientations, there is a marked effect of 
horizontal aspect ratio for values below unity. With a Nusselt number 
of 1.25 as a design limit, the ability of a rectangular honeycomb with 
d/L = 0.25 and W/L > 1 to inhibit natural convection improves with 
tilt from the horizontal. 
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Buoyancy Cross-Flow Effects on 
Longitudinal Boundary Layer 
Flow Along a Heated Horizontal 
Hollow Cylinder 

L. S. Yao1 and I. Catton2 

1 Introduction 
The three-dimensional'laminar boundary layer over a heated sur

face when gravity-driven buoyancy effects introduce significant 
cross-flow into an otherwise axially axisymmetric flow geometry is 
considered in this paper. The effect of surface heating on laminar 
boundary-layer stability and transition has been analyzed by Wazzan, 
Okamura, and Smith [l],3 and the effects on separation by Aroesty 
and Berger [2]. The buoyancy cross-flow effects have not, however, 
been included in such studies. 

The physical model chosen for study is a hollow, semi-infinite 
cylinder of radius a, which is aligned with its axis parallel to a uniform 
flow and normal to the direction of gravity. The uniform flow is as
sumed to have a velocity u„> and temperature Tm. The surface of the 
cylinder is heated to a constant temperature TW(TW > T„). For most 
external flows, the buoyancy force can be neglected in a small pure 
forced convection region of size 0 (ua,v

l/3/[fig(Tw — To)]2/3) down
stream of the leading edge. Beyond that region the effect of buoyancy 
cross-flow increases as the fluid flows downstream. There is, however, 
a region where it is still small and can be treated as second order. 
Further downstream, a distance of a-Re/Gr1'2, the initially small 
buoyancy effect becomes as a second-order effect. The solution of the 
intermediate region, where the buoyancy effect is second order, is 
presented in this paper. In this region, the fluid which is entrained 
by the basic forced laminar boundary-layer flow is given a cross-flow 
component by the buoyancy effect of the heated walls. Because of this 
entrainment, the secondary flow velocity grows linearly in the 
downstream direction. This is a different situation from the usual pure 
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complete data, particularly those in Table 3, add support to the belief 
that a honeycomb designed to suppress convection at 8 = 180 deg will 
serve well to reduce it to an acceptably low level even when tilted. 

The designer may wonder how honeycombs of other aspect ratios 
will perform. The theoretical results of Catton [13, 14] predict the 
onset of convection for cells of arbitrary aspect ratio d/L and hori
zontal aspect ratio W/L for values between 0.125 and 12 and infinite 
Prandtl number, and for 8 = 180 deg. The theoretically-predicted 
result for a square cell with L/d = 3 is RaCr - 0.7 X 105 for infinite Pr 
[13]. It seems to be in rough agreement with the experimental results 
of Heitz and Westwater [15], Racr = 106 for water (Pr = 6 to 11), and 
Cane, et al. [11], Racr = 1.3 X 105 for air (Pr = 0.7) with a radiation 
effect. For low aspect ratios theory indicates an (L/d)4 dependence, 
and the experimental results agree approximately [15]. Catton pre
dicts Racr = 2.85 X 104,1.20 X 105, and 1.10 X 104 for d/L = 0.25, and 
W/L = 0.5,1, and 2, respectively versus the present results of Racr = 
2.9 X 104,1.2 X 104, and 1.25 X 104 for 6 = 180 deg and values of d/L 
and W/L that correspond approximately. It thus appears that aspect 
ratio will have a strong influence upon critical Rayleigh number, ap
proaching (L/d)4 for small d/L, but as confirmed here horizontal as
pect ratio W/L has a weak effect when it is larger than unity. 

In the case of large d/L the effect of Prandtl number being 0.7 in
stead of infinity is apparently to lower Nusselt number by approxi
mately 13 percent [9]. Of considerable more importance than a minor 
Prandtl number dependency is the strong effect of radiation heat 
transfer through air in raising critical Rayleigh number [8]. For cells 
R2 and R3 containing air at 8 = 180 deg, Edwards and Sun [16] re
ported Racr = 2.78 X 104 and 2.60 X 104 respectively, twice as great 
as measured here with silicone oil. The radiation increases the heat 
loss by conduction from a thermal perturbation described in the 
discussion of reference [15] by radiatively cooling the wall adjacent 
to hot fluid and vice versa. 

Summary and Conclusions 
Heat transfer in rectangular honeycombs with an aspect ratio of 

approximately 0.25 but with three different horizontal aspect ratios 
was reported. Little effect of horizontal aspect ratio was found for 
values greater than unity. It was also found that at 8 = 90 deg there 
was no apparent effect of horizontal aspect ratio down to values 0.5 
and that heat transfer depended only upon the aspect ratio. Con
versely at near-horizontal orientations, there is a marked effect of 
horizontal aspect ratio for values below unity. With a Nusselt number 
of 1.25 as a design limit, the ability of a rectangular honeycomb with 
d/L = 0.25 and W/L > 1 to inhibit natural convection improves with 
tilt from the horizontal. 

References 
1 Buchberg, H., Lalude, O. A., and Edwards, D. K., "Performance Char

acteristics of Rectangular Honeycomb Solar-Thermal Converters," Solar En
ergy, Vol. 13,1971, pp. 193-221 

2 Hollands, K. G. T., "Natural Convection in Horizontal Thin-Walled 
Honeycomb Panels," JOURNAL OF HEAT TRANSFER, TRANS. ASME, 
Series C, Vol. 95, 1973, pp. 439-44. 

' 3 Lalude, O. A., and Buchberg,'H., "Design of Honeycomb Porous Bed 
Solar Air Heaters," Solar Energy, Vol. 13,1971, pp. 223-242. 

4 Sun, W. M., and Edwards, D. K., "Natural Convection in Cells With 
Finite Conducting Walls Heated From Below," Heat Transfer 1970, Proceed
ings of the Fourth International Heat Transfer Conference, Versailles, France, 
Paper NC 2.3, Elsevier Publishing Co., Amsterdam, Sept. 1970. 

5 Sun, W. M., "Effect of Arbitrary Wall Conduction and Radiation on Free 
Convection in a Cylinder," PhD dissertation, University of California, Los 
Angeles, 1970. 

6 Arnold, J. N., "Experimental Investigation of Natural Convection in 
Finite Rectangular Regions Inclined at Various Angles from 0° to 180°," MS 
thesis, University of California, Los Angeles, 1974. 

7 Arnold, J. N., Bonaparte, P. N., Catton, I., and Edwards, D. K., "Ex
perimental Investigation of Natural Convection in a Finite Rectangular Region 
Inclined at Various Angles from 0° to 180°," Proceedings of the 1974 Heat 
Transfer and Fluid Mechanics Institute, L. R. Davis and R. E. Wilson, eds., 
Stanford University Press, 1974, pp. 321-329. 

8 Edwards, D. K., and Sun, W. M., "Effect of Wall Radiation on Thermal 
Instability in a Vertical Cylinder," International Journal of Heat and Mass 
Transfer, Vol. 14,1971, pp. 15-18. 

9 Buchberg, H., Catton, I., and Edwards, D. K., "Natural Convection in 
Enclosed Spaces—A Review of Application to Solar Energy Collection," 
JOURNAL OF HEAT TRANSFER TRANS. ASME, Series C, Vol. 98,1976, 
pp. 182-188. 

10 Charters, W. W. S., and Peterson, L. F., "Free Convection Suppression 
Using Honeycomb Cellular Materials," Solar Energy, Vol. 13,1972, pp. 353-
361. 

11 Cane, R. L. D„ Hollands, K. G. T., Raithby, G. D., and Unny, T. E„ 
"Convection Suppression in Inclined Honeycombs," presented at ISES 1975 
Congress, UCLA, July 28-August 1, 1975. 

12 Edwards, D. K., Arnold, J. N., and Catton, I., "End-Clearance Effects 
on Rectangular-Honeycomb Solar Collectors," Solar Energy, Vol. 18,1976, pp. 
253-257. 

13 Catton, Ivan, "The Effect of Insulating Vertical Walls on the Onset of 
Motion in a Fluid Heated From Below," International Journal of Heat Mass 
Transfer, Vol. 15,1972, pp 665-672. 

14 Catton, Ivan, "Effect of Wall Conduction on the Stability of a Fluid in 
a Rectangular Region Heated From Below," JOURNAL OF HEAT TRANS
FER, TRANS. ASME Series C, Vol. 94,1972, pp. 446-452. 

15 Heitz, W. L., and Westwater, J. W., "Critical Rayleigh Numbers for 
Natural Convection of Water Confined in Square Cells With L/D From 0.5 to 
8," JOURNAL OF HEAT TRANSFER, TRANS. ASME, Series C, Vol. 93,1971 
pp. 188-195. 

16 Edwards, D. K., and Sun, W. M., "Predictions of the Onset of Natural 
Convection in Rectangular Honeycomb Structures," 1970 ISES Conference, 
Melbourne, Australia, Mar. 1970. 

Buoyancy Cross-Flow Effects on 
Longitudinal Boundary Layer 
Flow Along a Heated Horizontal 
Hollow Cylinder 

L. S. Yao1 and I. Catton2 

1 Introduction 
The three-dimensional'laminar boundary layer over a heated sur

face when gravity-driven buoyancy effects introduce significant 
cross-flow into an otherwise axially axisymmetric flow geometry is 
considered in this paper. The effect of surface heating on laminar 
boundary-layer stability and transition has been analyzed by Wazzan, 
Okamura, and Smith [l],3 and the effects on separation by Aroesty 
and Berger [2]. The buoyancy cross-flow effects have not, however, 
been included in such studies. 

The physical model chosen for study is a hollow, semi-infinite 
cylinder of radius a, which is aligned with its axis parallel to a uniform 
flow and normal to the direction of gravity. The uniform flow is as
sumed to have a velocity u„> and temperature Tm. The surface of the 
cylinder is heated to a constant temperature TW(TW > T„). For most 
external flows, the buoyancy force can be neglected in a small pure 
forced convection region of size 0 (ua,v

l/3/[fig(Tw — To)]2/3) down
stream of the leading edge. Beyond that region the effect of buoyancy 
cross-flow increases as the fluid flows downstream. There is, however, 
a region where it is still small and can be treated as second order. 
Further downstream, a distance of a-Re/Gr1'2, the initially small 
buoyancy effect becomes as a second-order effect. The solution of the 
intermediate region, where the buoyancy effect is second order, is 
presented in this paper. In this region, the fluid which is entrained 
by the basic forced laminar boundary-layer flow is given a cross-flow 
component by the buoyancy effect of the heated walls. Because of this 
entrainment, the secondary flow velocity grows linearly in the 
downstream direction. This is a different situation from the usual pure 

1 The Rand Corporation, 1700 Main Street, Santa Monica, Calif. Assoc. Mem. 
ASME. 

2 Assoc. Professor, University of California, Los Angeles, Calif. Mem. 
ASME 

;i Numbers in brackets designate References at end of technical note. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division June 17,1976. 

122 / FEBRUARY 1977 Transactions of the ASME Copyright © 1977 by ASME

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(r, $ x) 

Fig. 1 Physical model and coordinates 

free convection flow, where all boundary-layer entrainment is through 
buoyancy, and where the axial entrainment is zero. 

2 Analysis 
The nondimensional Boussinesq boundary-layer equations in cy

lindrical coordinates, as shown in Fig. 1, are 

du dw du 
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after neglecting smaller order terms under the condition that 

Gr/Re3/2 > 1 (2) 

The nondimensional variables used in scaling equations (1) are 

0 = -
T-T„ 

wV Re 

(temperature) 

(velocities) 

a 

(r - a ) V R i 
(coordinates) 

Re = (Reynolds number) 

Gr; 
PgaHTu, - T„) 

(Grashof number) 

Pr = via (Prandtl number) 

e = Gr/Re2 
(3) 

where a is the radius of the cylinder, u is the kinematic viscosity, ua 

and Tc„ are the free stream velocity and temperature, respectively, 
Tw is the wall temperature, a is the thermal diffusivity, g is the gra
vitational acceleration, and p is the thermal expansional coefficient, 
which is related to density by p = p_[l — /3(T — T„)]. The terms of 
the transverse curvature effects, which have been neglected in 
equations (1), reflect the fact that the thickness of the boundary layer 
0(a/\ /Re) is much thinner than the radius, a, of the cylinder. 

As mentioned previously, for the region very close to the leading 
edge of the cylinder, the buoyancy effect is negligible. The magnitude 
of this region, defined by equation (2), is of the order 

\jSg(Tw - T J ] 2 « 

Downstream of the leading-edge region, the solution of the equations 
in (1) can be expanded into a series of t, if t is small. 

« = /o ' + e(2x)2F^' cos <t> + . . . 

v = e(2x)i<Ysin (p + . . . (4) 

Pr=0.01 / 
/ 

10 

1 

7(for F,) 

Fig. 2 F) and F / functions 

<1x 
(vfo - fo) + 6(2x)3/2(nFi' - 5Ft - F2) cos <t> + . 

0 = 0O + e(2x)2G cos 0 + . (4̂  

Substitution of the expansion given by equations (4) into equations 
(1), and the collection of terms of equal order will result in the per
turbation equations. The perturbation equations of lowest order 
are 

/o" '+ /o /o" = 0 

B0" + Pr/„0o' = 0 

(5a) 

(56) 

where the prime denotes a derivative with respect to y\, with t\ = r/V^x 
being the Blasius similarity variable. The solution of equation (5a) 
is the Blasius solution. Equation (56) is the forced-convection energy 
equation, whose solution was first given by Pohlhausen in 1921. 

The first-order perturbation equations are: 

i V " + foFi" - 4/o'iY + 5/0"^i = -f0"F2 

F21" + faF2" - 2f0'F2' = -0o 

1 

Pr 
G" + (foG' - 4/o'G) = -B0'(6Fi + F2) 

(6a) 

(66) 

(6c) 

The associated boundary conditions for equations (10) are 

Fi(0) = i?i'(0) = F!'(co) = 0 

^2(0) = F2'(0) = F 2 ' (») = 0 

G(0) = G(oo)=0 (7) 

The expansion (4) breaks down at a distance of 0(a-Re/Gr1/2), 
corresponding physically to the point beyond which the buoyancy 
cross-flow effect, initially small, could become as important as the 
forced-convention effects. 

3 Results and Discussion 
Numerical values of the functions Fi, F\, F2, F2, and G are inte

grated numerically and presented in Figs. 2-4 for Pr = 0.01, 1, 10. 
Equations (4) show that the buoyancy force stabilizes the flow and 
accelerates its speed over the lower half of the cylinder (—w/2 < 0 < 
7r/2). Over the upper half of the cylinder (ir/2 < <t> < 3ir/2), the axial 
flow is decelerated and may be destabilized. The cross-flow is accel
erated by the buoyancy force from the lower stagnation point (<l> = 
0) to attain its maximum value at <j> = 7r/2, and then decelerated to its 
upper stagnation point (4> = ir]» It is interesting to note that the so
lution (4) represents the case of a vertical flat plate when 4> = 7r/2 for 
the region near the leading edge where the cross-flow is small. For a . 
vertical flat plate, the cross-flow is decoupled from the axial flow; in 
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Fig. 3 F2 and F2' functions 

-0.05 

-0.01 

Fig. 4 G function 

other words, the cross-flow does not affect the axial flow and the 
temperature distribution. The magnitude of the circumferential ve
locity, v, is being increased as a linear function of the axial coordinate, 
and eventually becomes one of the dominant velocity components 
when the fluid flows far enough downstream. 

The local Nusselt number with respect to a and (Tw — T„) can be 
derived from equation (12), which is 

Nu. ,=-V [flo'(0) + e(2x)2G'(0) • cos 4> + . (8) 

The first term of equation (8) represents the Nusselt number for a 
pure forced convection. The relative importance of heat transfer due 
to cross-flow can be indicated by 

NuA/(Nuv)A. = 1 + £(2x)2Gi'(0)/80'(0) • cos 0 + . (9) 

where /c denotes the forced convection. Equation (9) shows that the 
cross-flow enhances the heat transfer on the lower half of the cylinder 
and degrades it on the upper half of the cylinder. Values of G'(O)/0n'(O) 
are given in Table I for Pr = 0.01, 1, 10. 

The local shear stress at the cylinder surface can be computed from 
the equation 

Table 1 Enhancement parameters for heat transfer and wall shear stress 

Pr G'(0)/80'<0) Fj*(0)/f0 '«» F2 '(0) 

0.01 
1 

10 

0.08638 
0.09959 

0.06576 

0.19509 

0.09959 

0.04458 

0.92627 

0.619M 

0.39761 

• " ( 

— ) and 
dr/r=o 

( - ) \ d r / r=o 

Introducing the series expansions (4), the relative importance of the 
cross-flow effect on the axial shear stress can be found by 

= 1 + <E(2X): iY'(0) 
> + . (10) 

(rrx)fc fo"(0) 

The circumferential shear stress can be shown to be proportional 
to 

/2xF2"(0)-smit> (11) 

Values of y71"(0)//0"(0) and F 2 " are also given in Table 1. As can be 
seen, for </> - -w, the ratio decreases as tx2 increases, which indicates 
the possibility of enhanced separation. For moderate free-stream 
velocities, separation could occur within several radii of the leading 
edge. Further, the unevenly distributed axial shear stress, equation 
(10), can induce a pitch moment and could cause an oscillation of the 
moving cylinder. 

Equations (9) and (10) indicate that the cross-flow effect on heat 
transfer and shear stress for a heated horizontal cylinder grows rapidly 
when the fluid flows downstream, proportionally to x2..This means 
that an initially small cross-flow effect, which may be neglected in the 
region close to the leading edge of the cylinder, cannot be ignored for 
a heated, long slender body. 

The analysis is applicable to flow over the outer or the inner surface 
of a heated hollow cylinder. It is also applicable to flow over a slender 
body of revolution if the pressure gradient associated with the nose 
shape is negligible. The series solution presented in this work dem
onstrates that buoyancy effects can have a strong effect on developing 
flow along a heated horizontal cylinder even in the region of 0(a) and 
supplies the upstream boundary conditions for calculations down
stream of this region. In the downstream region, which is of 0(a Re/ 
Gr1/2), the magnitude of the buoyancy-induced cross-flow is of the 
same order as the axial flow and no similarity solution is possible. 
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Radiation-Convection 
Interaction in an Absorbing-
Emitting Liquid in Natural 
Convection Boundary Layer 
Flow1 

j . D. Bankston,2 J. R. Lloyd,3 and J. L. Novotny4 

Nomenclature 
~Ai = dimensionless total band absorption of tth region A,7o),-
d[ = intensity of the (th band compared to all bands 
ebo>j = derivative of Planck function at oij with respect to tempera

ture 
/ = dimensionless stream function defined by * = (54g(jqwi':i/k)1/5 

x4/5f(v, 0 
Gr* = modified Grashof number, g(Sq,„x4/kv2 

Pr = Prandtl number 
Qi = radiation integral, p,„> fo6'A/(uu)dz — Jl6'Ai'(u2i)dz + 

S;0'A,'(-u2l)dz 
Si = integrated band intensity 
u\i, u% = optical depth 
7 = a measure of the radiative flux at the wall, = btmrilaTJixl 

tw = wall emissivity 
T] = similarity variable, r/ = y/x (Gr*/5)1/5 

0 = dimensionless temperature, 8 = /e/x<?„,(Gr*/5)I/5 (T„ — T) 
n = kinematic viscosity 
£ = radiation interaction parameter, £ = ;t22;Sye(,„//A(Gr*/5)2/5 

a = Stephan Boltzman constant 
* = stream function 
o) = wave number 

In troduct ion 
Considerable interest has been shown in radiation interaction with 

conduction or convection for heat transfer in fluids. Initially emphasis 
was placed on studying the interaction in gases. This work proceeded 
from gray-gas studies, such as that of Cess [l],5 to non-gray analyses 
employing limiting forms to approximate the band profile, e.g., Bratis 
and Novotny [2], and more recently to an analysis by Novotny, et al. 
[3] employing the method of local nonsimilarity and the continuous 
correlation of Tien and Lowder [4] to account for the band absorp
tion. 

Radiation interaction in heat-transfer processes in liquids has re
cently received considerable attention due to the fact that the band 
absorptance is considerably greater for absorbing emitting liquids 
than gases. Thus, the approximate methods for analyzing radiation 
effects, such as by Bratis and Novotny [2], cannot be applied to liquids 
such as CCI4. Additionally, liquids are interesting because their ra
diation interaction effects are independent over a wide range of 
pressures. Poltz [5, 6] and Poltz and Jugel [7], in analytical and ex
perimental studies of radiation-conduction interaction in horizontal 
liquid layers heated from above, found that there were indeed sig
nificant radiation effects for a number of fluids. Schodel and Grigull 

1 This work was sponsored under National Science Foundation Grant GK-
20382. 

2 Aerospace and Mechanical Engineering, University of Notre Dame, Notre 
Dame, Ind. Presently: School of Engineering, University of New Orleans, New 
Orleans, La. 

:) Aerospace and Mechanical Engineering, University of Notre Dame, Notre 
Dame, Ind. 

4 Aerospace and Mechanical Engineering, University of Notre Dame, Notre 
Dame, Ind. Deceased. 

s Numbers in brackets designate References at end of technical note. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division January 28, 1976. 

[8] in a similar analysis considered radiation-conduction interaction 
and the dependency of the absorption coefficient on wavelength. They 
demonstrated that the heat flux by radiation was much greater than 
previously thought by Poltz and Jugel [7], and that it constituted an 
appreciable portion of the total heat transfer. The analysis was con
firmed through the interferometric evaluation of temperature profiles 
in layers of different fluids. 

An analysis comparing the effects of different band profiles of the 
Lorentz, Gaussian, and exponential types was performed by Novotny 
and Bratis [9] for radiation-conduction interaction in liquid carbon 
tetrachloride. They concluded that use of the exponential band profile 
over all wavelengths more closely represented the actual interaction 
process. In another study Novotny, et al. [10] presented two models 
for the total band absorption of absorbing-emitting liquids. The 
models, functions of two adjustable parameters, were based upon the 
exponential profile. The results were compared to total band ab
sorption data and to a prediction based on spectral integration. Al
though both models appeared to be sufficiently accurate for heat-
transfer work, the authors preferred their random model. 

The present note concerns' radiation-convection interaction in a 
liquid in natural convection flow adjacent to a vertical surface will 
constant wall heat flux. Local nonsimilarity techniques are employed. 
The method has certain advantages over other techniques in that it 
provides an internal check on the accuracy of the solution and permits 
the use of continuous correlations rather than limiting approximations 
to the total band absorptance. 

Analysis 
The geometry of the problem is shown in the insert of Fig. 1. The 

analysis is essentially the same as found in reference [3] for gases and 
is given in complete detail in reference [11]. Since no limiting ap
proximations were made in the radiation analysis, all that is necessary 
to convert this analysis to a liquid is to modify the band absorption 
formulation to fit the liquid behavior. This illustrates the versatility 
of this method. Only the final equations will be included herein. 
Carbon tetrachloride is the working fluid in the present work and the 
random model recommended by Novotny, et al. [10] is used to account 
for the total band absorption. 

The continuity equation, the momentum equation, and the energy 
equation are transformed into dimensionless form through the use 
of ?), the usual natural convection similarity variables, £, the local 
nonsimilarity variable which depends on x, the distance along the 
surface, Gr*, the modified Grashof number, 8, the dimensionless 
temperature, and /, the dimensionless stream function. The resulting 
governing equations in dimensionless form are given by 

1.00 

f = 0 , 6 W = 0 

- £ = 6 . 0 , 6 W = 0 

^ £ = 12.0, €„ =0 

T w ; 
or / 

V 
— y 

l g 
T 

O.IO 

0-06 1.02 

Fig. 1 Velocity and temperature distribution, qw = constant 
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Fig. 3 Radiation effect as a function of thermal boundary layer thickness, 
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Pr 

and 

/ df d{\ 

(i) 

(2) 

Here the primes denote differentiation with respect to rj. The 
boundary conditions are similarly transformed. The boundary con
ditions are 

fl'(0, i) = 1.0 + -y<»(0, £) - 3/2e,„£ Zdi f " 0Ai'(u,i)dz 
, Jo 

K£)=/(0,£)=/'(0,£) = f(»,£) = 0 

(3) 

(4) 

Under the local similarity concept 8 and / are considered to be 
slowly varying functions of £. Thus, to a first approximation, the 
right-hand side of equations (1) and (2) are considered to be negligible 
and are dropped. This results in a set of equations and boundary 
conditions referred to as the local similarity model. 

Differentiating the governing equations (1) and (2) and their 
boundary conditions with respect to £, a set of equations and boundary 
conditions are obtained which together with equations (1) and (2) are 
termed the two equation local nonsimilarity model. If second-order 
partials of £ are then neglected, these equations may be solved si
multaneously along with equations (1) and (2). The additional 
equations which complete the two equation model are 

T--8'B + 60'g - 3/'0 + 4/0' + - — L diQi = 0 
Pr 2Pr j 

g'" - 8f'g' + ifg" + 6f"g - 0 = 0 

Boundary conditions: 

0'(O, £ = 1 + 7 W , £) - - f,„£ T. di f " BAi'(u.i)dz 
2 i Jo 

(5) 

(6) 

(7) 

0'(O, £) = 70(0, 0 + 

3 

2e,„trre
2T°°3(Gr*/5)1/5fl(0, Q 

x £ Sjebu,/ 
i 

Zdi f ° 6Ai'(ui)dz - - tw£ Y.di C° 
i Jo 2 ; Jo 

cj>Ai'(uidz 

3twxt dii,- r-„-r,, 
T,—— 8Aj'(ll; 
i 6, Jo 

Here 

4(Gr*/5)1/5 ' 

0(» , 0 = g(0, 0 = g'(0, 0 = g'(<», & = 0 

4> = d6/d( and -g = df/di 

)dz (8) 

(9) 

This two-equation model is expected to yield a better solution than 
the local simularity model since a first-level approximation to the 
right-hand side of equations (1) and (2) is obtained. This procedure 
of obtaining approximations to the next higher order differential with 
respect to £ is continued until good agreement is obtained between 
successive levels. Good agreement is an indication of a valid solution, 
according to Sparrow and Yu [12]. Since the equations thus derived 
are in the form of total differential equations with only one inde
pendent variable, rj, straightforward Runge-Kutta integration can 
be employed. 

R e s u l t s 
Solutions were obtained using both the local similarity and the 

two-equation nonsimilarity approximations for wall emittances of 
0, 0.5, and 0.8. Essentially no difference was found between the two 
models for values of £ out to 12, the maximum value calculated, and 
thus only the local similarity results are presented. Fig. 1 presents the i 
velocity and temperature profiles for wall emissivities of 0 and 0.5, 
respectively, with £ being the parameter. The case of e = 0, £ = 0 
corresponds to no radiation at all. For wall emittance of 0 there is very 
little effect due to radiation for either the velocity or temperature 
profiles. As the wall emittance is increased the effect of radiation is 
increased, as is evidenced by the thicker boundary layers for both 
velocity and temperature and the lower temperature gradient at the 
wall. The nonsimilar behavior is ordered in both wall emittance and 
interaction parameter £. From Fig. 1 it may be deduced that for the 
range of parameters studied here, the wall emittance has a greater 
effect on the velocity and temperature profiles than J. This effect can 
be clearly seen from Fig. 2. Fig. 2 plots the ratio of the wall tempera
ture and the wall temperature gradients with radiation included to 
the convective heat flux without radiation as a function of £. It might 
be mentioned that this figure enables the calculation of radiation heat 
fluxes since the total wall heat is the sum of the convective plus 
radiative components and is a constant. Thus, for a wall emissivity 
of zero and one can find the constant value and then proceed from 
there. 

No experimental data corresponding to the conditions of the 
present study are available; however, a measure of the accuracy of the 
solutions may be obtained from the results listed by Novotny and 
Bratis [9]. In their work involving perfectly reflecting walls, it was 
shown that the effect of radiation interaction with conduction in CCI4 
is nearly linear with depth of the liquid layer for depths less than 5 
mm. One would expect, then, that for small thermal boundary layer 
thicknesses (say, less than 5 mm) the radiation effect would increase 
nearly linearly with boundary layer thickness. The radiation effect 
predicted in the present study for c = 0 or a perfectly reflecting wall 
is plotted against the boundary layer thickness, defined as the location 
where 6 = 0.01 6 wall, in Fig. 3. The effect is, indeed, nearly linear with 
boundary layer thickness further indicating validity of the present 
results. Shown also in the figure are the predictions for ew = 0.5 which 
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also are almost linear, but with a slight downward curve. 
It has been shown that the present method yields solutions which 

are reasonable in comparison with available data. This successful 
extension of the analysis method for gases of Novotny, et al. [3] to 
liquid carbon tetrachloride points out the versatility of the method 
of analysis. That this technique has been demonstrated to work in
dicates that the technique of Sparrow and Yu [12] can indeed be ap
plied quite successfully to radiation analyses. Also, it is expected that 
this technique can be used for other liquids as long as the band ab
sorption formulation is known. It is emphasized that this extension 
to a liquid required essentially no change in the analysis and only 
slight modification of the computer program for the gas analysis 
[3]-
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Heat Conduction in a Stack of 
Parallelograms Separated by 
Thin Partition Walls 

K. C. Chung1 and K. N. Astill1 

Nomenclature 
b = thickness of partition wall 
D = height of parallelogram 
Ki, = thermal conductivity of partition wall 
Ks = thermal conductivity of solid 
/ = dimensionless length of parallelogram; L/D 
L = length of parallelogram 
q = local heat flux density 
Q = total heat flux across x = til 
Qr = total heat flux in a rectangle 
Rk = ratio of conductances; (Kb/b)/(Ks/D) 
T = temperature 
x, y = rectangular coordinates 
x, y = parallelogrammic coordinates 
a = angle between y and y coordinates 
bx, by, by = grid space in x-, y-, and y- direction, respectively 
7; = ratio of heat flux; Q/Qr 
w = relaxation factor 

Subscripts 

h,c,m = high, low and medium value, respectively 
i, j = grid number in y- and x -direction, respectively 
M, N = number of grids in x- andy-direction, respectively 

Superscript 

k = order of iteration 
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I n t r o d u c t i o n 
For two-dimensional conduction of rectangular solids with simple 

boundary conditions, many analytical solutions, either steady or 
transient, are known. The solutions are in forms of double Fourier 
series which are obtainable by separation of variables or conformal 
mapping. The latter case is applicable only for either the Dirichlet 
problem or the Newmann problem. 

During the investigation of convective heat transfer in a composite 
wall structure, as conceived by Trefethen,2 the need for establishing 
a reference heat flux of conduction arose. It was decided to use two-
dimensional conduction in a stack of parallelograms separated by thin 
partition walls. No analytical solutions were found to exist. 

Suppose there is an infinitely long, one-dimensional slab with dif
ferent constant temperatures along both boundaries. When this slab 
contains equally spaced, inclined parallel partition walls between the 
two isothermal walls (Fig. 1(a)), the steady temperature distribution 
and overall heat flux will depend on the angle of inclination and 
conductance of the partition walls. The effect of these variables on 
heat transfer and conduction is investigated numerically in this 
study. 

F o r m u l a t i o n of the P r o b l e m 
Two-dimensional equation of heat conduction in a rectangular 

coordinate system for steady state is 

d2T d2T 
+ r = 0 (1) 

dx2 dy2 

Since each of the component parallelograms in the slab is identical 
thermally, as well as in the shape, attention can be given to a single 
isolated element. This is shown in Fig. 1(6) along with definitions of 
the coordinate axes. Variables are made nondimensional by the fol
lowing definitions: x' = x/D, y' = y/D, y' = y/D, and T'= (T — Tm)/ 
(Th - Tm), where T,„ = (Th + Tt.)/2. Dropping primes yields a di
mensionless governing equation in the same form of equation (1). For 
convenience of treating boundary conditions the x-y coordinates are 

2 Trefethen, L. M. and Chung, K. C, "Natural Convection in a Vertical Stack 
of Inclined Parallelogrammic Cavities," (paper in preparation). 
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also are almost linear, but with a slight downward curve. 
It has been shown that the present method yields solutions which 

are reasonable in comparison with available data. This successful 
extension of the analysis method for gases of Novotny, et al. [3] to 
liquid carbon tetrachloride points out the versatility of the method 
of analysis. That this technique has been demonstrated to work in
dicates that the technique of Sparrow and Yu [12] can indeed be ap
plied quite successfully to radiation analyses. Also, it is expected that 
this technique can be used for other liquids as long as the band ab
sorption formulation is known. It is emphasized that this extension 
to a liquid required essentially no change in the analysis and only 
slight modification of the computer program for the gas analysis 
[3]-
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I n t r o d u c t i o n 
For two-dimensional conduction of rectangular solids with simple 

boundary conditions, many analytical solutions, either steady or 
transient, are known. The solutions are in forms of double Fourier 
series which are obtainable by separation of variables or conformal 
mapping. The latter case is applicable only for either the Dirichlet 
problem or the Newmann problem. 

During the investigation of convective heat transfer in a composite 
wall structure, as conceived by Trefethen,2 the need for establishing 
a reference heat flux of conduction arose. It was decided to use two-
dimensional conduction in a stack of parallelograms separated by thin 
partition walls. No analytical solutions were found to exist. 

Suppose there is an infinitely long, one-dimensional slab with dif
ferent constant temperatures along both boundaries. When this slab 
contains equally spaced, inclined parallel partition walls between the 
two isothermal walls (Fig. 1(a)), the steady temperature distribution 
and overall heat flux will depend on the angle of inclination and 
conductance of the partition walls. The effect of these variables on 
heat transfer and conduction is investigated numerically in this 
study. 

F o r m u l a t i o n of the P r o b l e m 
Two-dimensional equation of heat conduction in a rectangular 

coordinate system for steady state is 

d2T d2T 
+ r = 0 (1) 

dx2 dy2 

Since each of the component parallelograms in the slab is identical 
thermally, as well as in the shape, attention can be given to a single 
isolated element. This is shown in Fig. 1(6) along with definitions of 
the coordinate axes. Variables are made nondimensional by the fol
lowing definitions: x' = x/D, y' = y/D, y' = y/D, and T'= (T — Tm)/ 
(Th - Tm), where T,„ = (Th + Tt.)/2. Dropping primes yields a di
mensionless governing equation in the same form of equation (1). For 
convenience of treating boundary conditions the x-y coordinates are 

2 Trefethen, L. M. and Chung, K. C, "Natural Convection in a Vertical Stack 
of Inclined Parallelogrammic Cavities," (paper in preparation). 
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Fig. 1 Stack of parallelograms in a two-dimensional slab with constant 
temperature walls and its finite grid coordinates 

converted to an x-y coordinate system, which results in the following 
relationship: 

1 I (-. in a — I 
dx / 

(2) 
dy cos a \ dy dx 

Therefore, the governing equation (1) in dimensionless form will be. 
in x-y plane: 

d2T d2T d2T 
— 2 sin a 1 = 

dx2 dxdy dy2 0 

Boundary conditions in this coordinate system are: 

T = - l a t x =01 

T = latx = ( i 

dT 

dy 
; prescribed implicitly at y = 0 and y = 1/cos a 

(3) 

(4a) 

(46) 

The problem domain is divided into M X N small parallelogram 
meshes with dimensions bx by by in x-y plane as shown in Fig. 1(6). 
The finite difference formulation of equation (3) is based on central 
differences. At node i, j , the explicit form of the equation for new 
temperature is 

T / + l = Ti/ + o>\AdTiJ+1 + Tij-i) + A2(Ti+lj + Ti-ij) 

+ A3(Tl + hj+l + Ti-u-i - Ti+u-! - T , - l j + 1 ) - TV') (5) 

where 
Ai = by2/2(bx2 + by2), A2 = bx2/2(bx2 + by2), 

A;t = — bxy sin a/A(bx2 + by2) 
and w is a relaxation factor chosen to accelerate convergence. 

Thickness, b, of the partition wall is assumed small enough such 
that heat conduction in x -direction along the wall is negligible. Heat 
flux density across the partition wall is 

qj = -Ks (—) = -K„ (—) = -Kb(Tu - TN+lJ)/b 

(6) 

From equation (2) and (6) we have 

—— — - tan a —) = (Kb/KtHTu - TN+lJ)/b (7) 
cos a dy dx/ lj 

Using the Taylor series expansion the temperature gradient at the 
partition wall is approximated by 

(8) 

Similarly, 

\dy/ N+IJ 
4TNJ + 3TN+1J)/2by (9) 

These approximations are identical to fitting a second degree poly
nomial and taking the first derivative. Using the expressions (6)-(9), 
the following formulas of iteration for wall temperatures are ob
tained. 

T u * + 1 = IBiT/v+ij + 4T2J- - T 3 J - B 2 (T 1 J + i - Tij-iWWa (10) 

and 

TN+ijk+1 = I S i T u + 4TNj - T J V - U 

- B2(TN+1J+1 - T w + l j - 1 ) | * / B 3 (11) 

where 

Bi = 2Rk/M, B2 = dy sin a/bx and B3 = Bi + 3. 

Numerical Procedure 
Numerical iteration leading to a steady-state solution is carried out 

using the relaxation formula (5) with the static boundary conditions 
(4a) and the dynamic boundary conditions (10) and (11). To reduce 
computing time without sacrificing quality of solutions the following 
three considerations were made. 

1 Temperature Field as an Odd Function, (i) With the center 
point as an origin of x-y coordinate, the geometry of the problem is 
symmetric with respect to the origin; (ii) since differential operator 
of the governing equation (iii) is symmetric either an even or odd 
function can satisfy the equation; (iii) boundary conditions at the 
partition walls satisfy a relationship 

! ( ™ ) -

l \ dj> / cos 
cos « \ dx 

( -— ) tan a 

V dy I cos a \dx/ 
t a n a (12) 

J V— 1/cOStt 

and this equation admits either even and odd functions; and (iv) 
constant temperatures at both isothermal walls require the temper
ature function to be odd. By (i), (ii), (iii), and (iv) it is concluded that 
the temperature field is symmetric with opposite sign with respect 
to the center point. This is illustrated in Fig. 1(6). Therefore, it is 
possible to reduce the number of grids to about a half with a new 
boundary at j = M/2 + 2 instead of the old one at;' = M + 1. The new 
boundary condition can be established dynamically as: 

T;,M/2+ -TN+2-i,M/2k,i=l,2,..,N+l (13) 

2 Computation of Heat Flux Across x = C/2. It was noticed 
that overall heat flux as well as local flux might be estimated in
consistently from one case to another when normal temperature 
gradients are computed along the constant temperature walls. For 
instance, the temperature gradient by first order approximation of 
Taylor series would heavily depend on grid size. This requires a large 
number of grids in x -direction. With second order approximation 
(equivalent to second degree polynomial approximation) it was even 
worse since a negative gradient could appear locally in the sharp 
corner. Therefore, heat flux was computed across x = (/2 with central 
differences for temperature gradients. Local heat flux density normal 
to x = 1/2 is 

-Ks 
/Th 

( ^ ) 
[dT dT 1 

tan a 
I dy dx cosali.M/2+i, 

YJI'.A 

1, 2, ..,N + l (14) 

At the partition wall (i = 1 or N + 1) dT/dy is approximated according 
to the equations (8) and (9). Thus, the total heat flux across x = £/2 
is: 

1 = T. (<?,• + qi+i)Dby/2 (15) 

It was found that the heat flux estimation at x = t/2 reduced the 
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Fig. 2 Steady-state isotherms in a two-dimensional parallelogrammic solid 
with L/D = 5 and a = 40° 

Table 1 Variation of the ratio of heat flux, 77, with aspect ratio, L/D, angle 
of inclination, a, and ratio of conductances, Rk 
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strong dependence of solutions on number of grids and eliminates 
inconsistencies. 

3 Adoption of a Variable Relaxation Factor. The relaxation 
factor, a), could be increased dynamically ffom 1 to 2 or over to speed 
up convergence during the iteration. 

Results 
Number of grids, M X N, employed ranges from 11 X 10 to 21 X 10 

for a half of the domain depending on aspect ratio, L/D. Numerically 
the procedure was always stable and converged fast to a steady state. 
In Fig. 2 steady-state isotherms are shown for the case L/D = 5 with 
a = 40 deg. With increasing Rk the isotherms approach those without 
partition walls. When a = 0, temperature distribution was indepen
dent of Rk as expected having the isotherms parallel with y-axis, since 
the conduction was one-dimensional. A ratio of heat flux, 77, was de
fined such that 77 = Q/Qr as a shape parameter of conduction, where 

Qr represents total flux of one dimensional conduction. Dependence 
of 7) on a and Rk is shown in Fig. 3 for L/D = 5 and overall results of 
77 with variations of L/D, Rk and a are listed in Table 1. The ratio of 
heat flux, 7/, increases monotonically with the angle a, since the in
crease of a reduces real thickness of the slab shortening the effective 
path length of conduction. If a different aspect ratio, thickness of the 
slab versus length of the constant temperature wall of the parallelo
grammic solid, is used, the effect of inclined, poorly conducting par
tition walls would increase the effective path length actually de
creasing conduction. Higher ratio of conductances, Rk, however, al
ways causes more heat transfer with the total flux approaching the 
value for one-dimensional slab. 

4.0 

3.0 

2.0 

1.0 

I 

L /D= 5 

-

-

1 

1 ' 

! 

Rk = 1 0 0 — 7 / , 

J / 
/£-— Rk = 1 

Rk = 0 — p a ^ 

1 

0° J. = 20° 40° 60° 

Fig. 3 Variation of the ratio of heat flux, 77, with angle of inclination, a, and 
ratio of conductances, Rk, when L/D = 5 

Two-Dimensional Effects on 
Heat Transfer Rates From an 
Array of Straight Fins 

N. V. Suryanarayana,1 

Arrays of fins are frequently used to increase heat transfer rates 
from one fluid to another separated by a solid wall. Because of the 
differences in heat transfer rates from the unfinned and finned 
parts,—two dimensional effects exist. However, heat transfer rates 
from the fins are often computed on the basis of uniform fin base 
temperature. The purpose of this note is to examine the errors in
volved in computing the heat transfer rates from fins on the basis of 
uniform base temperature. 

The model of the fin examined is shown in Fig. 1. If the uniform 
base temperature is denoted by To, the heat transfer rate from a single 
fin is given by 

1 Assoc. Professor, Department of Mechanical Engineering and Engineering 
Mechanics, Michigan Technological University, Houghton, Mich. Mem. 
ASME. 

Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division July 12,1976. 

Journal of Heat Transfer FEBRUARY 1977 / 129 

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Rk=IO. 

- 1 . 0 / 7-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 / l , 0 
rb.a 

RK= I. 

Rk = 0. 

Fig. 2 Steady-state isotherms in a two-dimensional parallelogrammic solid 
with L/D = 5 and a = 40° 
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strong dependence of solutions on number of grids and eliminates 
inconsistencies. 

3 Adoption of a Variable Relaxation Factor. The relaxation 
factor, a), could be increased dynamically ffom 1 to 2 or over to speed 
up convergence during the iteration. 

Results 
Number of grids, M X N, employed ranges from 11 X 10 to 21 X 10 

for a half of the domain depending on aspect ratio, L/D. Numerically 
the procedure was always stable and converged fast to a steady state. 
In Fig. 2 steady-state isotherms are shown for the case L/D = 5 with 
a = 40 deg. With increasing Rk the isotherms approach those without 
partition walls. When a = 0, temperature distribution was indepen
dent of Rk as expected having the isotherms parallel with y-axis, since 
the conduction was one-dimensional. A ratio of heat flux, 77, was de
fined such that 77 = Q/Qr as a shape parameter of conduction, where 

Qr represents total flux of one dimensional conduction. Dependence 
of 7) on a and Rk is shown in Fig. 3 for L/D = 5 and overall results of 
77 with variations of L/D, Rk and a are listed in Table 1. The ratio of 
heat flux, 7/, increases monotonically with the angle a, since the in
crease of a reduces real thickness of the slab shortening the effective 
path length of conduction. If a different aspect ratio, thickness of the 
slab versus length of the constant temperature wall of the parallelo
grammic solid, is used, the effect of inclined, poorly conducting par
tition walls would increase the effective path length actually de
creasing conduction. Higher ratio of conductances, Rk, however, al
ways causes more heat transfer with the total flux approaching the 
value for one-dimensional slab. 
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Two-Dimensional Effects on 
Heat Transfer Rates From an 
Array of Straight Fins 

N. V. Suryanarayana,1 

Arrays of fins are frequently used to increase heat transfer rates 
from one fluid to another separated by a solid wall. Because of the 
differences in heat transfer rates from the unfinned and finned 
parts,—two dimensional effects exist. However, heat transfer rates 
from the fins are often computed on the basis of uniform fin base 
temperature. The purpose of this note is to examine the errors in
volved in computing the heat transfer rates from fins on the basis of 
uniform base temperature. 

The model of the fin examined is shown in Fig. 1. If the uniform 
base temperature is denoted by To, the heat transfer rate from a single 
fin is given by 
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Q is half the heat transfer rate from a single fin, k is the thermal 
conductivity of the material of the fin, b is the width of the fin, Bi = 
hBt/k. A conventional approach to the determination of the base 
temperature of the fin is to assume it to be the same as would exist at 
BC in the unfinned situation [l].2 Sparrow and Hennecke [2] exam-
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Fig. 3 Error in fin heat transfer for computational model 2 

ined the temperature depression as a result of the higher heat transfer 
rate (compared with the unfinned part) from a single fin. In a recent 
paper [3], Sparrow and Lee analyzed the effect of such temperature 
depression on heat transfer rates from an array of fins, employing 
uniform, but different, temperatures at the base of the fin and the 
unfinned parts. 

While it is usual to assume the base temperature of the fin to be the 
same as that for the unfinned case, other possibilities exist. These are: 
(a) to ignore the thermal resistance of the wall (part ABCD in Fig. 1) 
and employ convective boundary condition at the base BC; and (6) 
matching the temperature and heat transfer rates at surface BC, as
suming surfaces AB and CD to be perfectly insulated—ignoring the 
heat transfer rate from the unfinned part. The results obtained by 
employing each of the foregoing possibilities for determining the fin 
base temperature are summarized below: 

(1) Base temperature equal to that in the unfinned Case 

To, 1 

• + Bi • W + 1 

(2) 

H 
1 Numbers in brackets designate References at end of technical note. (2) Convective boundary condition 
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x = (,k— + hA(Tx=L-TA) = 0 
ax 

7V = 1 

TA 

(3) 

1 + • 
HVBi 

t a n h ( V B l L ) 

(3) Matching temperature and heat transfer rate (treating the 
wall ABCD and the fin as two one-dimensional domains) 

TA ' 
1 + ( i + Bi.H/) 

(4) 

t a n h ( v B l Z ) 

In the foregoing equations To,,, To,-, and To,,, represent the base 
temperature employing the appropriate boundary condition; H = 
tiA/h-H', W is the dimensionless wall thickness Sit and L is the di-
mensionless length of the fin (It. When these expressions are sub
stituted for T0/TA in equation 1, the corresponding fin heat transfer 
rates Q*os, Q*oc a n d Q*o,n are obtained, where the asterisk is used to 
signify heat transfer rates computed on the basis of one-dimensional 
analysis. 

To examine the validity of the foregoing approximations, the actual 
heat transfer rates from the fin, Q, were computed by using finite 
differences. One-dimensional analysis of fins require that Bi « 1 and 
hence solutions were carried out for Bi = 0.1. Heat transfer rates were 
computed for all possible combinations of the values of the variables 
affecting the accuracy of one-dimensional analysis, as given in the 
following: 

H = 1,10, 100; P = 1.5, 2.0, 3.0; W = 0.5, 1, 2, 5; 
L = 1, 2.5, 5.0 where P = p/2t 
Defining the errors involved in the assumption of uniform base 

temperatures as Et = 100 (Q*Qs - Q)IQ, E-, = 100 ( Q V - Q)/Q, and 
E$ = 100 (Q*o„, — Q)/Q they are presented in Figs. 2-4 for the range 
of variables indicated previously. From an examination of these fig
ures, the following conclusions can be drawn. 
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1 The assumption of equality of fin base temperature and the 
corresponding unfinned surface temperature leads to an overesti-
mation of the heat transfer rates. The magnitude of the error can be 
considerable—as high as 80 percent (H = 1, W = 5, P = 1.5). For a 
given value of H, the error increases with an increase in the wall 
thickness, an increase in the length, and a decrease in the pitch. Also, 
the error increases with a decrease in the value of H. For very short 
fins ((It = 1), it gives satisfactory values. 

2 The use of convective boundary condition (equation (3)) gives 
reasonably satisfactory values of heat transfer rates for thin walls (W 
= 0.5). But as the wall thickness increases, the wall resistance to heat 
transfer becomes significant and ignoring this resistance leads to 
considerable overestimation of the heat transfer rates for values of 
H greater than 10. The use of convective boundary condition is gen
erally unsatisfactory for wall thickness of W > 0.5. 

3 Matched boundary conditions (equation (4)) are generally 
satisfactory, particularly for high values of H. In general, it tends to 
an underestimation of the heat transfer rates but the error is usually 
within —25 percent. 

From this study covering a limited range of the variables involved, 
it can be seen that the assumption of a uniform base fin temperature 
based on the unfinned situation can lead to significant errors in the 
computed heat transfer rates from the fins. It may be more appro
priate to compute the heat transfer rates from the fins with the as
sumption of uniform base temperature based on matched boundary 
conditions, equation (4). 

Another consequence of the increased heat transfer through the 
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fins is the temperature depression of the surface to which the fins are 
attached as compared with the temperature computed for the no fin 
situation. The heat transfer rates from the unfinned part based on 
the temperature for the no fin situation tends to be higher than the 
actual heat transfer rates and the magnitude of the error E4 = 100 
(Q*UF — QUF)/QUF where Q*UF = heat transfer from the unfinned 
part based on the temperature for the no fin situation and QUF = 

actual heat transfer rate from the unfinned part is shown in Fig. 5. As 
can be expected, the errors are higher for lower values of the pitch P, 
and the ratio of the heat transfer coefficients H. An increase in the 
wall thickness increases the error. 
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Homogeneous in Cylindrical 
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Y. P. Chang2 and R. C. H. Tsou3 

Introduction 

This is one of a series of papers concerning the analytical solution 
of heat conduction in anisotropic media, and the second for homo
geneous anisotropic medium in circular cylinder coordinates. All 
notations used in this paper are the same as those defined in [l],4 

which appears in the same issue of this journal, and considers the 
steady-state solutions of the same problems. 

According to the conclusion drawn in [1], it is, in general, difficult 
to obtain the analytical solution for the temperature, but the Green's 
function can be obtained with less difficulty. Since Green's functions 
satisfy homogeneous equations, those in steady state can be readily 
obtained from those in unsteady state by the integration of the latter 
with respect to time from zero to infinity. The result thus obtained, 
however, will be in the form of a double (or triple) series, if the latter 
is a double (or triple) series. It is sometimes difficult to reduce the 
double (or triple) series into a single (or double) series. Therefore, it 

is more convenient to determine the Green's functions for steady 
problems directly from the solution of their governing equations. 

Basic Equations and Formal Solutions 
For a monoclinic system, the governing equations are: 

1 d I dT\ 
) +k22-—+2k12 ' « ; ( dr) 

1_32T 

r2 dB2 

d2T 

rdrdd 

82T 
+ k33—-=-Q(r,0,z)mQ (1) 

dz2 

dT 
b 1- hT = fi on surface S 

dn+ 
(2) 

If G(r, 8, z\r', 8', 2') is the Green's function associated with equations 
(1) and (2), then the temperature can be obtained by the use of Green's 
second formula [2] 

T(r,6,z) = — C Q(r',8',z')G(r,0,z\r',6',z')da(r',0',z') 
fen Jn 

- f / ( / • ' , 0',z') — G(r, B,z\r', B',z')dS(r', 8', z') (3) 
Js dn+ 

for boundary conditions of the first and third types, ku appears be
cause we have divided the governing equation by kn- If the surface 
conditions are of the second type, then the last integral in equation 
(3) is replaced by 

f /(/•', 8', z')G(r, 8, z\r', 6', z')dS(r', 8', z1 (4) 

If all boundary conditions are of Neumann type for either a solid or 
hollow cylinder of finite or infinite length, the Green's function does 
not exist, but we can still construct the generalized Green's function. 
Of course, the consistency condition relating Q and / are to be satisfied 
a priori, i.e., 

C QdQ + P fidS = 0 
J a Js 

Green's F u n c t i o n s for Sol id and H o l l o w Cyl inders 
If either Q or / depends on r, 6, and 2, then the Green's function G(r, 

8, z\r', 8', z') is governed by 

1 d I dG\ d2G 
1 r ~~ I + 2"12 „ „„ + l"22 
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and the appropriate boundary conditions. By following the same 
procedure as we used in the determination of Green's functions as
sociated with unsteady problems [1], we obtain 

G(r, 8,z\r', 8', 2') = - ^ f) £ R(r\r', n.0, X) cos (n[{8 - 8') 
"it m=\ 11=0 \ 

- vn\n-)j Zmn(z\z') (6) 

where R(r\r', nfi, A,„„) satisfies 

R. + LR,+ ^mni_ripjR 
1 
•i(r-r') (7) 

1 Many results of this study were ohtained in early 1973 while the second 
author was with the State University of New York at Buffalo. 

2 Department of Mechanical Engineering, State University of New York at 
Buffalo, Buffalo, N. Y. 

•' General Electric Co., San Jose, Calif. 
1 Numbers in brackets designate References at end of technical note. 
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Division April 28,1976. 

bR' ±hR = 0 for r = r> 

and Zmn satisfies 

Z" + -

bZ' 

^ - Z = - -
"33 

±hZ = 0 

-6(2 — z')e 

for z = 0, 2 

(8) 

(9) 

(10) 

The solution of equation (9) satisfying equation (10) is 
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Zmn(zz') 

( e W * + hmn'e-^-'n[ex^'z' + (l/hmn')e-

2\mn'[hmn' - (l/hmn')e^-'e] 
(11) 

For a solid cylinder of radius ro with boundary conditions of the 
third type on the cylindrical surface, the solution of equation (7) 
satisfying the boundary condition (8) at r = ro is in the same form as 
equation (26) in [1]. Thus, we obtain the Green's function with the 
boundary conditions of the third type at the cylindrical surface and 
at the ends, z = 0 ,1. 

G(r,0,z\r',6',z') 

£ £ 
Jnf](^mnr)Jnfl0^mnr') 

27r,~i , " 0 (B0
2 + A„„, W + n*p)JnllH\mnr) 

• cos n[8 — 0 — i<i2 In — J 

(ex-""'g + femn
/e-^"'z)[e>"""v + (l/hmn')e~^'^} 

(12) 

Green's functions with boundary conditions of other types can be 
obtained by specializing equation (12) to each case. 

For a hollow cylinder of inner and outer radii n and r2 with the 
convective heat transfer coefficients different at the inner and outer 
surfaces, the solution of equation (7) satisfying boundary conditions 
(8), is given by equation (32) in [1]. Substituting equation (11) and 
equation (32) of [1] into equation (6) gives the Green's function with 
boundary conditions of the third type on the cylindrical surfaces. 
Green's functions with boundary conditions of the first type, or one 
type at r\ and another type at r2 can be found in the same way, or by 
specializing the general result to each case. 

If the cylinder is infinitely long and the heat generation and 
boundary conditions are invariant in axial direction, i.e., Q = Q(r, 0) 
and / = f(rs, 8), the Green's functions can be obtained by following 
the same procedure. 

G(r8\r',8')= — Z R(r\r', nB) cos n\ (8 - 0') - «12 In - 1 
2ir„=o L r'A 

where R{r\r', nB) satisfies the equation 

R" +-R' 
r 

n2B2 

R- •5(r-r') 

(13) 

(14) 

and the appropriate boundary condition. The solution of equation 
(14) depends upon whether n = 0, n ^ 0, r < r', and r > r'. For 
boundary conditions of the third type, we can obtain the Green's 
function for r < r', 

C ( r , , k , n . _L( i . + 1 1 1 i 2 ) + ^£ iL ri\nP 
2ir \Bo r'l 2w8„ = inL \r0

2l 

+ (-)'" -cos J (fl — 0') — Pialn-^l (15) 

For r > r', we just interchange r and r' in equation (15) except in the 
cosine function. If the boundary condition at r = ro is of the first type, 
G(r, 8\r', 8') can be obtained by setting B0 = °>, and hence h,m = 1. 
For boundary conditions of the second type, the Green's function does 
not exist, but we can construct the generalized Green's function. By 
the same procedure as used for isotropic media [3], we obtain for 
r < r' 

G2(r,8\r',8') 
rz 1 , r0 1 " 1 f /rr'\"H 

•• + — I n —+ T - \ I — ) 
4wr0

2 2ir r' 2TT/3 „ = , n L Vr0
2/ 

+ (-)'' • cos n\(8 - ft') - uv> In -f + const (16) 

and for r' < r, we simply interchange r and r' in equation (16) except 
in the cosine function. 

For a hollow cylinder with boundary conditions of the third type 
with hi and h2 at r\ and r% we obtain for r < r' 

G(r,0\r',0') 
\ B ! r'J \ B 2 r'l 

/ 1 1 '"2\ 
•2TT{ — + — + ln —) 

\B i B2 rj 

1 - / r\ 
H Y" cos ra I 9 — fl' — Ki9 In — ) 

hlnhin[rr'/(rir2)^ + hln[r/(n2r')]^ + h2n[r/(r2
2r')^ + (rr')]"f> 

nihu.ri-21"1 - /^2,l'•2"2"',) 

(17) 

where hin = (ra/3 - Bi)/(nP + BO and h2n = (n/3 - B2)/(n/3 + B2). 
For r > r', we just interchange r and r' in equation (17) except those 
in the cosine function. Green's functions for boundary conditions of 
the first type or any combination of the first, second and third type, 
can be found by the same way, or by specializing equation (17) to each 
case. However, if boundary conditions at ;-i and r2 are all of the second 
type, Green's function does not exist but we can still construct the 
generalized Green's function for r < r' 

G(r,B\r',B') •i (. 
2 - n

2) \ 
r 2 + 2 / - 1

2 l n - + 2 r 2
2 l n - ) + — 

r r'l 2x6 

n = l 

47r(r2
2 - n2) \. r r'l 2T8 

[rr'/(nr2)
2]nli + [/'/(n V ) ] ' " ' + [r'/(r2

2r)]n» + (rr')-"'1 

n(rr2" ~ r2-
2n) 

• cos n[{6 - 6') - vA2 In (r/r')\ + const (18) 

and for r' < r we just interchange r and r' in equation (18) except in 
the cosine function. 

Inf in i te and I n t e r n a l l y B o u n d e d R e g i o n s 
For an infinite region or a region bounded internally by a cylindrical 

surface of radius ro, we may seek the solution for Gi(r, 8, z\r', 8', z') 
in the form of 

v(r, z) exp in(0 — 0' — v\2 In — ) (19) 

which satisfies equation (5) if u(r, z) satisfies 

1 d2v 1 du B2n2 d2v 
: + - - — u + "33" 

dr2 r dr dz2 
'-&(r-r')5(z-z') (20) 

For infinite region, we may apply the Hankel transform as was done 
in [1] to obtain 

G(r, B.zr', 0',z') 

= J_ ^ 
2ir Jo 

r l W v » ( 2 - 2 ' ) £ J„^r)Jnli(\r') 
n = ( ) 

N f f - 6 l ' ) - i ' i 2 l n ^ • cos n (B - 8') d\ (21) 

This is the fundamental solution of heat conduction in an anisotropic 
medium of the monoclinic system which is homogeneous in circular 
cylinder coordinates. 

For the internally bounded region, we apply Weber's transform [1] 
to obtain 

G(r,e,z\r',B',z')=— f e-(Wv^5)U-e') 
2-ir J o 

y — i 1 cos n\ {8 — 8) - i'y> In—\ a \ (12.) 
„=0 Vnli(\rQ) L r'l 

where the functions £/„# and Vnli are identical to those given by 
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Fig. 1 Temperature distribution, (3 = 2, j / 1 2 = 1, vi2 = 5 

equations (47)-(50) in [1] for boundary conditions of the first and 
third types. 

Note from equation (21) that the fundamental solution, or Green's 
function in free space of anisotropic media which are homogeneous 
in cylindrical coordinates, can no longer be expressed in a closed form 
as is possible for isotropic media or anisotropic media which are ho
mogeneous in rectangular coordinates [4]. 

Orthotrop ic and Anisotropic E f f e c t s 
To investigate the orthotropic and anisotropic effects on the tem

perature field, we consider two examples. 
1 An infinite solid cylinder whose surface is kept at T0 sin 8 where 

To is a constant. We specialize equation (12) to the case for first-type 
boundary condition and the result is substituted into equation (3) to 
obtain 

, 6) = T0 (-) sin (o - „12 In - ) T(r, 8) = (23) 

2 A hollow cylinder with temperatures at the inner and outer 
surfaces kept at T(ri8) = T, and T(0) = T0 sin 0 where T} and T0 are 
constant. For this case, we specialize equation (17) by setting B\ = 
B-2 = °=> to obtain: 

2w\n(r2/n) 2x/3 

n[(r2/ri)}-^ - 1 

•cos re (e-ff -vV2\n-\ (24) 

For r' > r we just interchange r' and r in equation (24) except in the 
cosine function. Applying equation (24) to equation (3) and using the 
given boundary conditions, we obtain 

T=Tl 
In (r2/r) 

In (r-Jn) + T0 
' ' l 

( 0 - « i 2 l n - ) (25) 

Note that equations (23) and (25) reduce to those of the corresponding 
orthotropic problems by setting c12 = 0 and (3 = i"22, and to those of 
isotropic cases by setting )3 = 1 and i>ia = 0. 

The orthotropy of the material is characterized by 1/22 and the an-
isotropy by V12. For a given value of C12, the stronger the orthotropy, 
the larger the value of/3. On the other hand, for a given value of ^22, 
the stronger the anisotropy, the smaller the value of /5. We now con
sider the solution (23). In an orthotropic medium (/3 = 1/22), the tem
perature in the interior of the circular cross-sectional area is lower for 
/J > 1 and higher for /? < 1 than the temperature in an isotropic me
dium (/3 = 1) at the same position in the upper half of the circular area 
(0 < 8 < T) but opposite effects occur in the lower half of the circular 
area (ir < 8 < 2jr). The increase of 1*12 decreases /3 and hence increases 
the amplitude of temperature for a given value of r and shifts the 
highest and lowest temperature clockwise by an angle of 1*12 In (r/ro). 
These discussions can be clearly seen from the calculated results of 
equation (23) as shown in Fig. 1. The same discussions can be made 
regarding equation (24). 

S e p a r a t i o n of V a r i a b l e s 
We next show how the results of equations (23) and (25) can be 

obtained directly by the classical method. If we assume that T(r, 8) 
= \l/(r)<l>(8), then the homogeneous partial differential equation for 
T(r, 8) can be separated into two ordinary differential equations 

<!>' - \<f> = 0 (26) 

r2f" + (linvn + l)ri' + ino^ = 0 (27) 

The solution of equation (26) satisfying the periodic condition is 

<!>• X = n = 0, ±1 , ±2, ± 3 , . (28) 

Equation (27) has the solution in the form 

\j/ = R(r)r-'m'u 

where R(r) satisfies 

1 n2B2 

R" + -R' — = 0 
r r2 

Thus, we can assume the solution for T(r, 8) in the series form 

T(r, 8)= Z R,,li(r)r-
i""»ei"<1 (29) 

From the given boundary conditions, and the solution for R(r), which 
is well known, we obtain the results of equation (23) and (25). 

Discussions and Concluding Remarks 
All of the Green's functions obtained above reduce to those for 

orthotropic media by setting i/u = Q and to those for isotropic media 
by putting v\2 = 0 and ft = f.a = 1. 

It is seen from the expressions for Green's functions obtained above, 
and the integral equation (3) that an analytical expression for the 
temperature is difficult to obtain, if there is heat production in the 
medium. 

All the problems in this paper can also be solved by Fourier's 
method, although the separation process is slightly more complicated 
and restrictive for general anisotropic problems. Thus, the usual 
conclusion that the technique of separation of variables does not apply 
to anisotropic problems (for instance, references [5, 6]), is not always 
true at least in the broad sense of this technique. 
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Heat Transfer in a Three-
Dimensional Anisotropic Solid 
of Arbitrary Shape 

G. P. Mulholland1 and B. P. Gupta2 

Introduction 
The mathematical difficulties associated with most technical 

problems prohibit an exact, closed-form analytical solution. These 
difficulties can be caused by the form of the governing partial dif
ferential equation or by the boundary conditions associated with the 
problem. It is the latter situation which is considered in this work; that 
is the situation wherein the bounding surface of the solid may or may 
not conform to a standard orthogonal curvilinear reference frame. 

The particular problem dealt with in this paper is the heat transfer 
in a three-dimensional anisotropic body of arbitrary shape having as 
thermal boundary conditions the most general linear type. The so
lution method uses a computer routine which constructs orthonormal 
functions and provides series coefficients which correspond to the 
given boundary conditions. A very detailed discussion of this ortho-
normalization procedure has been given by Davis [l]3 and Sparrow 
[2], so only the important features will be discussed here. 

The basic problem is to solve the differential equation of heat 
conduction for a three-dimensional anisotropic solid, equation (1). 
The bounding surface of the region need only be a continuous closed 
curve. After the governing equation is transformed to Laplace's 
equation, equation (11), by means of equations (4) and (8), the solu
tion method involves two distinct steps [2]. In the first step, a system 
of linear algebraic equations is generated by evaluating the boundary 
condition at a discrete set of points. The second step utilizes the or-
thonormalization subroutine to satisfy the linear equations in the 
least-squares sense. The orthonormal functions utilized in the com
puter subroutine are formed by means of the Gram-Schmidt method 
[1, 2]. 

With the original equation transformed to a Laplace-type equation, 
the solution can be written as 

N 
9 = Z bifi(xi, yi, 21) 

i = i 

The bi are arbitrary constants to be determined from the boundary 
conditions by means of the orthonormalization procedure, while the 
/, are obtained from the three-dimensional harmonic functions. Thus, 
the temperature distribution at any point within the solid can be 
found since the 6, and /,• are known. 

P r o b l e m 
The governing partial differential equation for the heat transfer 

in a three-dimensional anisotropic solid whose thermal properties are 
constant is given by [3] 

d2T 

d£2 

d2T 

dv
2' 

,d2T 

dS2 

d2T 

dt]dd 
^j2T* ^j2'71 

+ (K311 + Kls
l) — - + (K12l + K211) —~ + q = 0 (1) 

obot; a^a-q 

Associated with equation (1) are known conditions at the surface 
which can be boundary conditions of the first, second, or third kind 
[4] and will be discussed later. 

1 Department of Mechanical Engineering, New Mexico State University, Las 
Cruces, N. M. Mem. ASME. 

2 Department of Mechanical Engineering, New Mexico State University, Las 
Cruces, N. M. 

;1 Numbers in brackets designate References at end of technical note. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division May 27, 1976. 

Equation (1) can be transformed to a canonical form in the fol
lowing manner: Let the conductivity matrix be denoted by A 

A = 

'Kn1 K12
l K1: 

K211 K221 

K311 K321 

K23
l 

KM1 

Kij = Kjit i = 1, 2, 3, ;' = 1, 2, 3 (2) 

This matrix can be reduced to a diagonal matrix since it is symmetric. 
The elements of the diagonal matrix are the eigenvalues of the matrix 
A and are obtained from the eigenvalue equation: 

(Ku 1 - \)[(K221 - X)(#3. 
„1 _ \\K,„U 

The roots of equation (3) are the principal conductivities of the system 
and can be represented as Ki, K2, and Ks along the principal axes x, 
y, and 2. The principal axes are related to the £, TJ, <5, coordinate system 
by 

(4) 

where 

B = normalized eigenvector matrix corresponding to matrix A 
BT = transpose of matrix B 

The elements of the matrix B are the directional cosines between the 
principal axes and the reference axes. Transforming equation (1) into 
the principal coordinate system, we obtain 

'x' 

y 

z 

= 

• • 

B 

T 

P" 
V 

8 

d2T „ d2T „ d2T 

dxl ay2 dz2 

In addition, let 

x\ /Ki 
yi 

so that equation (5) becomes 

d2T d2T 
• + • 

21 ; 

d2T 
+ -+<7 = 0 

dz i2 

z 

(5) 

(6) 

(7) 

If the heat generation term q is a constant, the transformation [2] 

(8a) Q = - + ^(x1
2 + y1

2 + zl
2) 

q 6 
will reduce equation (5) to Laplace's equation. For q not constant, the 
transformation [2] 

6 •• T+ T. QGiix,, yl,z1) 
f = i 

where 

d2Gi d2Gi d2Gi 
T~2~+ 1~T + TT = f'(xu yu 2 l ) 
ax\2 oyi2 dzi2 

q = £ Cifi(xhyhzi) 
1 = 1 

(86) 

(9) 

(10) 

will reduce equation (5) to Laplace's equation. The C, in equations 
(8b) and (10) will be obtained from the orthonormalization procedure 
since the/ , (^ i , yi, 21) and q(xi,yi, 21) will be known. 

Under the transformation given by either equation (8a) or (86), 
equation (7) becomes 

d29 d20 d\ 
• + - + — •= 0 (11) 

which is the three-dimensional Laplace equation. The most con
venient method for generating solutions of equation (11) is by means 
of the three-dimensional harmonic functions [2] 
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and 

Rmn = rnP„m (cos 9) sin nip, m<n 

Rmn = rnPn
m (cos 0) cos n<t>, m < n 

(12a) 

(126) 

The Pn'" are the associated Legendre polynomials and r, 9 and <j> are 
the coordinates in a spherical reference frame. The first five of these 
harmonic functions are tabulated in Appendix A and are denoted by 
fi(%i, yi> zj). Additional terms can easily be generated by using 
equation (12). With the /, known, the solution for 9 is given by 

9(*i, yi, zi) = H bifi(.xi,yuzi) (13) 

where the 6; are arbitrary constants to be determined from the 
boundary conditions. The solution given by equation (13) is unique 
since it is a solution of Laplace's equation. A convenient method for 
checking round-off error has been given by Davis [1]. His method 
consists of checking the norm of the least-square approximation of 
a function F by n functions /,. The norm is supposed to be mono-
tonically decreasing, but it may increase after decreasing for a while. 
This increase indicates a serious round-off error and the computation 
should be stopped. Davis [1] also presents a method for "straightening 
out" the orthonormal vectors. 

Boundary Condit ions 
The most general thermal boundary condition can be represented 

by 

Ai(-) = A2T(&, TO, TO) + A3 (14) 

where n is the outer normal at the bounding surface and the A\, A2, 
and A3 are arbitrary known functions. The normal derivative is given 
by 

dT dT dT dT 
T~ = Ml 7"~ + M2 T~ + M3 IT" on axi 0x2 0x3 

(15) 

where 

^Ki 
(tBu + mB2l + pB3i) i = 1, 2, 3 

and where / , m, and p are direction cosines and the B,y, (1 = 1, 2, 3, 
j = 1, 2, 3) are the elements of the normalized eigenvector matrix B. 
Substitution of equations (8), (13), and (15) into equation (14) 
gives 

dfi dfi\ I " dti ™ dt: « dt; \ 
\ ,=1 dxi\B ,-=i ayi\R ,=1 dz\\BI 

A2PY.bjA +4, (16) 
>=i IB 

where 

\p = - [(2tnxi + 2M2yi + 2M3Z1M1 
6 

(xS + yS + z^AdB + As; P = q 

for q constant and 

N 1 dGi 
1// = A S Ci (MI — 

;=I \ dxi 

dGi dGi 
+ M2-—+M3 — 

3yi dz ) . 

-A2-£,CiGi\B + As; P = l 
1 = 1 

hi = [Aui 
dfi dfi dfi dfi \ 

+ Aui2 — + Alfi3- Ai.fi) 
ax\ dyi ozi 11 

(18) 

Since the quantities hi and A4 are known at the boundaries, the b; can 
be determined from the orthonormalization process. With the 6; 
known, the temperature distribution is found either by means of 
equation (8a) or q constant or by means of equation (86) for q not 
constant. 

The temperature distribution in the original reference frame can 
be obtained from equation (6) and the transformation 

'I 
•0 

d 
I J 

[BT]- (19) 

where [ S T ] _ 1 = inverse of the transposed eigenvector matrix B. 
The boundary points can be read into the computer either by al

gebraic equations or by a three-dimensional matrix. For example, in 
the illustrative problems which follow, 72 points on the boundary were 
used for the calculations. These points were read into the computer 
by means of algebraic equations but a three-dimensional matrix could 
have been used just as easily. In fact, for completely general boundary 
contours, a matrix input would have to be utilized. 

E x a m p l e s 
For the first illustration, the steady-state temperature distribution 

in an isotropic sphere will be considered. This particular problem was 
chosen because the exact solution can be easily obtained and com
parisons can be made between the exact and the orthonormalization 
solution. 

The pertinent properties are 

Ki 0.214 cal/cm K hr; T(£B> TO, TO) = 0°C 

Kjjl = 0, i = l , 2 , 3 , > = 1,2,3, i ^ j ; q = 0.5 cal/cm;l-hr 

Since the sphere is isotropic, the matrix B becomes an identity matrix 
and by using the transformation given by equation (8a), we obtain 
the three-dimensional Laplace equation, equation (11). The solution 
for 9(xi, y\, Z\) is given by equation (13) where the 6, were obtained 
by imposing the boundary conditions at the surface. Temperature 
calculations were made for seven values of the radius and the agree
ment between the exact solution and the appropriate solution was 
within 0.6 percent at all points. 

For the next example, a prolate spheriod will be considered. The 
relationship between the £, ?j, 5 coordinate system and the prolate 
spheriodal system (a, {S, y) is given by 

£ = e sinh a sin 0 sin 7; ri = e cosh a cos (3; 

S = — e sinh a sin (1 cos 7 

Let 

e = 0.75; Ku' = 0.264 cal/cm K-hr; 

K22' = 0.231 cal/cm K-hr' 

K33' = 0.214 cal/cm K-hr; K2J' = Kl2' = 0.029 cal/cm K-hr 

^31 = Km = K23 = K32 = 0 

q = 0.5 cal/cm3 hr 

T(SB, VB, &B) = 0 

The foregoing property values are characteristic of some of the com
mon forms of graphite-(e.g., ATJ). For this case, the eigenvector ma
trix B becomes 

for q not constant. Equation (16) can be written in a more compact 
form as 

£ bihiixiB, yiB, ZIB) = $IP = A4 (17) 

0.866 -0.5 0 

0.5 0.866 0 

0 0 1 

where and the principal conductivities are 
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Table 1 Temperature at selected points within spheroid 

S(cm) 

0.319 

1.1809 

1.8092 

2.0891 

0.319 

0.6283 

1.7263 

n(cm) 

-1.125 

-1.125 

-1.125 

0.0 

1.125 

1.125 

1.125 

Mem) 

1.8092 

1.4073 

-0.319 

0.3684 

1.8092 

1.7263 

0.6283 

TEMPERATURE 
ANISOTROPIC 

2.971 

3.002 

3.074 

3.184 

3.0635 

3.096 

3.174 

<°C) 
ISOTROPIC 

3.059 

3.174 

3.230 

3.288 

3.0593 

3.110 

3.223 

0.319 

1.1809 

2.0891 

0.6283 

1.7263 

-1.125 

-1.125 

1.125 

1.125 

6 (cm) 

1.8092 

1.4073 

-0.319 

1.7263 

0.6283 

Table 2 

2.312 

2.854 

3.000 

3.042 

3.399 

Temperature (°C) 

2.895 

2.876 

2.935 

3.116 

3.360 

n - 9 

2.971 

3.002 

3.074 

3.096 

3.174 

n - 14 

2.971 

3.002 

3.074 

3.096 

3.174 

3 Carslaw, H. S., and Jaeger, J. C, Conduction of Heat in Solids, Clarendon 
Press, Oxford, 1959. 

4 Ozisik, M. N., Boundary Value Problems of Heat Conduction, Interna
tional Textbook Co., Seranton, Pa., 1968. 

5 Sparrow, E. M., and Haji-Sheikh, A., "Flow and Heat Transfer in Ducts 
of Arbitrary Shape with Arbitrary Thermal Boundary Conditions," JOURNAL 
OF HEAT TRANSFER, TRANS. ASME, Series C, Vol. 88, 1966, pp. 351-
358. 

6 Sparrow, E. M., and Haji-Sheikh, A., "Transient and Steady Heat Con
duction in Arbitrary Bodies with Arbitrary Boundary and Initial Conditions," 
JOURNAL OF HEAT TRANSFER, Vol. 90,1968, pp. 103-108. 

Appendix A 

The f Functions 
For a spherical frame, the first five / functions are: 

/i = 1. h ~ r c o s e> 

fi = r sin 6 cos <t> 

h 

h = ~ (3 cos2 9 
2 

?• sin 6 cos <j> 

1) 

For the foregoing functions, ij> is the angle between the positive x 
axis and the projection of r on the x-y plane while 0 is the angle be
tween the positive z-axis and r. 

Ki = 0.281 cal/cm K hr 

K2 = 0.214 cal/cm K hr 

Ka = 0.214 cal/cm K hr 

Proceeding in the same manner as before, we obtain the fe; coeffi
cients 

bi = 9.64567 be = 0.108 X 10"6 

b2 = 0.48322 X 10"5 67 = -0.765 X KT 6 

63 = -0.111 X 10-5 b8 = 0.101 X 10~2 

64 = 0.135 X 10-4 

65 = 0.1376 X 10" 
ba = -0.841 X 10"' 
bio = -0.327 X 10" 

611 = -0.5708 X 10~8 

612 = 0.577 X 10"8 

613 = -0.169 X 10-8 

6,4 = 0.565 X 10~8 

and the temperature distribution is then given by 

T(xlt yu z1) = qZ 6,/,On, yi, 2 l ) - - (x^ + y, 2 + 2 ,2) 
;=i 6 

Some values for the temperature at various positions within the body 
are given in Table 1 for the anisotropic and isotropic {K = 0.231 cal/ 
em°K-hr) cases. The difference between the two solutions ranges from 
0 to 7 percent dependeng on the location within the solid. The total 
time required to calculate the temperature at 30 points within the 
solid was 5.04 s on an IBM360/65 computer using 14 terms in the se
ries, equation (13). 

The rapid convergence of the series, equation (13), is shown in Table 
2 for this particular problem. After five terms, all the values are within 
5 percent of the actual temperatures and there is no change in the 
temperature, within three significant figures after the decimal point, 
for more than nine terms in the series. 

Acknowledgments 
The authors would like to thank Mr. Michael Frisch of the Uni

versity of Minnesota Computer Center and Dr. A. Haji-Sheikh of the 
University of Texas at Arlington for providing them with the OR-
THON subroutine. 

On the Solution of Transient 
Conduction With Temperature-
Dependent Thermal 
Conductivity 

R. C. Mehta1 

Nomenclature 
a = thickness of finite slab, or length of rectangular plate 
b = width of rectangular plate 
B = Biot number, ha/k(B) 
Cp = specific heat 
h = heat transfer coefficient 
k(6) = k0(l + (30) 
kg = reference thermal conductivity at T = To 
K(6) = k(8)/k0 

t = time 
T = temperature 
X = dimensionless coordinate, x/a 
x, y = coordinates 
«o = reference thermal diffusivity, k0/(pCp) 
/3 = constant (thermal conductivity coefficient) 
p = density 
T = dimensionless time, agt/a2 

£, (j> = dimensionless coordinates, irx/a and 7ry/6, respectively 
6 = dimensionless temperature 

Introduction 
The high temperature range involved and considerable variation 

of thermal conductivity with temperature for many present-day 
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Table 1 Temperature at selected points within spheroid 
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3.110 

3.223 

0.319 

1.1809 

2.0891 

0.6283 

1.7263 

-1.125 

-1.125 

1.125 

1.125 

6 (cm) 

1.8092 

1.4073 

-0.319 

1.7263 

0.6283 

Table 2 

2.312 

2.854 

3.000 

3.042 

3.399 

Temperature (°C) 

2.895 

2.876 

2.935 

3.116 

3.360 

n - 9 

2.971 

3.002 

3.074 

3.096 

3.174 

n - 14 

2.971 

3.002 

3.074 

3.096 

3.174 

3 Carslaw, H. S., and Jaeger, J. C, Conduction of Heat in Solids, Clarendon 
Press, Oxford, 1959. 

4 Ozisik, M. N., Boundary Value Problems of Heat Conduction, Interna
tional Textbook Co., Seranton, Pa., 1968. 

5 Sparrow, E. M., and Haji-Sheikh, A., "Flow and Heat Transfer in Ducts 
of Arbitrary Shape with Arbitrary Thermal Boundary Conditions," JOURNAL 
OF HEAT TRANSFER, TRANS. ASME, Series C, Vol. 88, 1966, pp. 351-
358. 

6 Sparrow, E. M., and Haji-Sheikh, A., "Transient and Steady Heat Con
duction in Arbitrary Bodies with Arbitrary Boundary and Initial Conditions," 
JOURNAL OF HEAT TRANSFER, Vol. 90,1968, pp. 103-108. 

Appendix A 

The f Functions 
For a spherical frame, the first five / functions are: 

/i = 1. h ~ r c o s e> 

fi = r sin 6 cos <t> 

h 

h = ~ (3 cos2 9 
2 

?• sin 6 cos <j> 

1) 

For the foregoing functions, ij> is the angle between the positive x 
axis and the projection of r on the x-y plane while 0 is the angle be
tween the positive z-axis and r. 

Ki = 0.281 cal/cm K hr 

K2 = 0.214 cal/cm K hr 

Ka = 0.214 cal/cm K hr 

Proceeding in the same manner as before, we obtain the fe; coeffi
cients 

bi = 9.64567 be = 0.108 X 10"6 

b2 = 0.48322 X 10"5 67 = -0.765 X KT 6 

63 = -0.111 X 10-5 b8 = 0.101 X 10~2 

64 = 0.135 X 10-4 

65 = 0.1376 X 10" 
ba = -0.841 X 10"' 
bio = -0.327 X 10" 

611 = -0.5708 X 10~8 

612 = 0.577 X 10"8 

613 = -0.169 X 10-8 

6,4 = 0.565 X 10~8 

and the temperature distribution is then given by 

T(xlt yu z1) = qZ 6,/,On, yi, 2 l ) - - (x^ + y, 2 + 2 ,2) 
;=i 6 

Some values for the temperature at various positions within the body 
are given in Table 1 for the anisotropic and isotropic {K = 0.231 cal/ 
em°K-hr) cases. The difference between the two solutions ranges from 
0 to 7 percent dependeng on the location within the solid. The total 
time required to calculate the temperature at 30 points within the 
solid was 5.04 s on an IBM360/65 computer using 14 terms in the se
ries, equation (13). 

The rapid convergence of the series, equation (13), is shown in Table 
2 for this particular problem. After five terms, all the values are within 
5 percent of the actual temperatures and there is no change in the 
temperature, within three significant figures after the decimal point, 
for more than nine terms in the series. 

Acknowledgments 
The authors would like to thank Mr. Michael Frisch of the Uni

versity of Minnesota Computer Center and Dr. A. Haji-Sheikh of the 
University of Texas at Arlington for providing them with the OR-
THON subroutine. 

On the Solution of Transient 
Conduction With Temperature-
Dependent Thermal 
Conductivity 

R. C. Mehta1 

Nomenclature 
a = thickness of finite slab, or length of rectangular plate 
b = width of rectangular plate 
B = Biot number, ha/k(B) 
Cp = specific heat 
h = heat transfer coefficient 
k(6) = k0(l + (30) 
kg = reference thermal conductivity at T = To 
K(6) = k(8)/k0 

t = time 
T = temperature 
X = dimensionless coordinate, x/a 
x, y = coordinates 
«o = reference thermal diffusivity, k0/(pCp) 
/3 = constant (thermal conductivity coefficient) 
p = density 
T = dimensionless time, agt/a2 

£, (j> = dimensionless coordinates, irx/a and 7ry/6, respectively 
6 = dimensionless temperature 

Introduction 
The high temperature range involved and considerable variation 

of thermal conductivity with temperature for many present-day 

References 
1 Davis, P. J., "Orthonormalizing Codes in Numerical Analysis," in Survey 

of Numerical Analysis, J. Todd, ed., McGraw-Hill, New York, 1962. 
2 Sparrow, E. M, "Solution of Heat Transfer Problems by Orthonormali-

zation Methods," in Computational Approaches in Applied Mechanics, E. 
Sevin, ed., ASME, 1969, pp. 85-106. 

1 Propulsion Engineering Division, Vikram Sarabhai Space Centre, Tri-
vandrum, India 

Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division August 31,1976. 

Journal of Heat Transfer FEBRUARY 1977 / 137 
Copyright © 1977 by ASME

Downloaded 22 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



materials require that the variation of conductivity with temperature 
be considered in the analysis of transient heat conduction. Owing to 
the attendant nonlinearity of the governing equation, an exact solu
tion to this problem is not feasible except for the limiting case of a 
one-dimensional semi-infinite slab [l].2 Many approximate solutions 
are therefore reported both for one-dimensional [2-5] and two-di
mensional [5, 6] heat flow in finite regions. 

For modest nonlinearities, Mingle [7] has employed a "numerical 
perturbation technique" for one-dimensional case utilizing the exact 
solution in conjunction with an iterative scheme. The present note 
reports an iterative solution for the transient temperature distribution 
in a two-dimensional finite solid with variable thermal conductivi
ty. 

The Iterative Procedure 
For the purpose of illustration, we describe the procedure for one-

dimensional problem. Extension of the method for two-dimensional 
heat flow is straightforward as shown in an example presented later 
in the text. 

The description of transient conduction in a one-dimensional slab 
having two parallel surfaces Sn (n = 1, 2) is given in dimensionless 
form as follows: 

^-(X,T)=4Z\K(0) — (X,T)\ in region R, T > 0 (1) 
8X\ 

d8_ 

ex 
(Sn, T) = B„ [B(S„, T)] on boundary Sn, r > 0 

0(X, 0) = F(X) in region R 

(2) 

(3) 

We now consider the constant property solution as an initial guess 
to the foregoing nonlinear problem. The solution for the constant 
property case is well known [8] and can be written in terms of eigen-
function yp(\m, X) as: 

8(X, r) = Z exp[-\2„,r Mttm, X) f t(\m, X)F(X)dX 
Jit 

(4) 

To take into account the effect of the variable thermal conductivity 
on the temperature distribution, we make an assumption that at any 
section X in the region R, thermal conductivity remains constant over 
a small interval AX. The solution of the governing equation (1) is 
expected to be locally represented in a form similar to that given by 
equation (4), with a perturbation on r and Am that are related to the 
thermal conductivity. An iteration scheme is then set up for the 
temperature field for the "i + l"th iteration to be given by 

HX, r) = Y. exp[-K(0<)(A„ 
m = l 

rWXj.X) 

Jit 
X)F(X)dX, 0^X^R;T>0 (5) 

In the iteration scheme, terms on the right-hand side of equation 
(5) are evaluated from the ith iteration.to obtain the i + 1 iterate di
rectly from the left-hand side of the equation. The calculation then 
continues until convergence within the tolerance e is achieved. It is 
to be noted that the eigenvalues Am' depend on B,,' (S„, r) which is 
a function of the current value of the thermal conductivity at the 
surface and are the same for all X in the region R. It is appropriate 
to mention here that a somewhat similar procedure in conjunction 
with a finite element approach has been used by Myers [9] for solving 
two-dimensional steady-state conduction. 

Convergence 
The convergence of the iteration equation (5) is now examined. It 

is mentioned by Scarborough [10] that the criterion for convergence 
for the iteration is given by |6y/30| < 1 in the neighborhood of the 

desired value 0, where ip represents the right-hand side of equation 
(5). Therefore, it requires that 

I £ r _ m Xm2Texp[-K(<>)\m
2T]«M\m,x) 

lm = i L do J 

X f ^(\m,X)F(X)dx\ < 1 (6) 
Jit I 

The expression ^SniFdX is always less than or equal to 1. It can be 
shown that the expression X,„ 2r exp[-K(0) A„, 2x] has a maximum of 
l/2.718K(0) at A,„ 2r = 1/K(6). To satisfy equation (6), we now obtain 
the approximate convergence criteria as: 

1 dK(B)\ 

l2.718K(fl)' dd \ 
< 1 (7) 

For example, in the case of K(8) = 1 + fid, it can be shown that | fl\ < 
2.718 for achieving convergence of the iteration process. This limit 
of 0 is satisfied in many practical cases. Thus, equation (7) establishes 
the approximate limits on the permissible variation of the thermal 
conductivity with temperature. Similar criterion is applicable for the 
two-dimensional problem also. 

Examples 
1 The Finite Slab. Here the equations to be solved are the gov

erning equation (1) with the following boundary and initial condi
tions: 

80 
(0, T) = 0; T > 0 

ex 
0(1, T) = 1 ; T > 0 

and 8(X,T) = 0 ; for all X 

(8) 

Linear variation of thermal conductivity with temperature is con
sidered: 

K(B) = 1 + , 0) 
Using the present iteration scheme, the temperature distribution is 
obtained for values of fi equal to 0.5 and —0.5. This is compared with 
the finite difference solution of [11] where a two-time-level, Crank-
Nicholson implicit method is used while a Taylor's forward projection 
method is employed to take into account the nonlinearities. The local 
order of accuracy of the numerical solution is given by [(AX)2 + (AT)2]; 
and its stability and convergence are reported in references [11,12]. 
20 space intervals and a time increment of 0.005 are taken to insure 
convergence of solution. 

Fig. 1 shows that the present results are in good agreement with the 
finite difference solution: 

2 The Rectangular Plate. Consider the case of a finite rectan
gular plate (0 =£ £ ;§ v, 0 < <f> < -IT) of uniform temperature 0 = 1 at T < 
0, and the temperature of the edges is maintained at zero for r > 0. 
The thermal conductivity K(8) is assumed to be a linear function of 
temperature and is represented by 

K(8) = [1 + /30(£, j>; T)[ (10) 

The governing differential equation of heat conduction is given by 

dd „ I /d r <90\ _„ / d 

Z'*{&™$+"&™ (11) 

and the initial and boundary conditions are as follows: 

O«£«7r;O«S0=S7r, r < O ; 0 = l 

- Numbers in brackets designate References at end of technical note. 

£ = 0 , TT; <j> = 0, TT; T > 0; 0 = 0 (12) 

where R = a/b 
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Fig. 1 Comparison of temperature distribution from iterative and numerical 
solutions for a slab of thickness a 

T h e c o n s t a n t p r o p e r t y solut ion [6] is given by 

, 16 1 
0(1. </>; r) = — E E — sin(/e£) sin(A/>) 

it1 k t k( 

Xexp | [ -7 r 2 (A 2 + fl^2)]r); k,i = l,3,b , N (13) 

T h e i te ra t ive equa t ion becomes 

v2 k i ke 

X exp | [ -7r 2 (k 2 + R2(2)][l + 0\T\\ (14) 

T h e t e m p e r a t u r e d i s t r ibu t ion across t h e semiwid th of a finite rec

t angu la r p la t e wi th R = xk and <j> = w/2 us ing i tera t ive p rocedure . I t 

is in terest ing to note t h a t only th ree i terat ions are required to obta in 

t h e des i red accuracy of 10~4 . Fig. 2 reveals t h a t t h e p r e s e n t r e su l t s 

are in good agreement wi th finite difference solution of reference [6], 

t hus d e m o n s t r a t i n g t h e convergence and accuracy of t h e p r e s e n t 

scheme. 

Fig. 2 Temperature distributions across the semiwidth of a finite rectangular 
plate at midsection <j> = ir/2 for a variable thermal conductivity /3 = O.S ob
tained using the iterative method (ITS), compared to temperature distribution 
obtained through finite difference method (FDS) [3J, R = 1/2 
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Nomenclature 
A = nominal contact area between successive layers in a stack, m2 

C = thermal conductance of interface per unit nominal area of contact, 
W m ^ K " 1 

C* = dimensionless conductance of interface per unit area 
/( ) = function of parameters stated within the bracket 
/ = number of layer-to-layer interfaces in a stack 
k = bulk material thermal conductivity, W m" 1 K _ 1 

M = hardness of the surface of a layer, N m~2 

n = exponent of the load 
N = total number of contact planes in a stack including those between 

the flux meters (=1 + 2) 
P = applied loading, N m~2 

P* = dimensionless loading pressure applied to stacks 
Q = thermal current flowing through a stack, W 
R = thermal resistance per contact of unit nominal area (= 1/C), m2 

K W " 1 

t = individual layer thickness, m 
T = temperature, K 
A = difference between 
t = porosity of either a metal powder or metal fibre assembly (0 < e 

<D 

Subscripts 

B = for the bulk material 
LL = for the layer-to-layer assembly 
ML = for the flux meter-to-layer assembly 
s = of the solid 
TOT = total for the stack 
TOT, N = for a stack of (N - 1) layers 

Introduction 
Stacks of thin metallic layers are sometimes used as thermal insu

lators because each interface has a very low ratio of real-to-apparent 
area of contact [1, 2].5 Such stacks may also possess relatively high 
compressive strengths [3]. The overall insulation achieved depends 
on the deformation behavior of the bulk material, the hardnesses and 
surface topographies of the contacting surfaces, the oxide layers 
present, and upon the number of interfaces employed in series [4]. The 
solid-solid contact conductance (i.e., in the absence of an interfacial 
fluid) per contact also depends upon the individual layer thicknesses 
chosen [2, 4, 5]. The thermal resistance of a stack of thin layers may 
be as much as two orders of magnitude greater than that of a solid 
specimen of the parent material having similar overall dimensions 
[6]. However, because the resistance across each contact is often high, 
large tranverse heat losses can occur from stacks and so appreciably 
reduce the accuracy of the presented conclusions. 

Theoretical predictions for stacks of thin layers are much more 
complex than those associated with single contacts between semi-
infinite bodies due to our ignorance concerning the heat flow paths 
across individual layers. Stack deformation behavior depends upon 
the initial buckle and the individual'layer thickness [3, 7]. Thus 
macroscopic measurements for stacks of thin layers can give only 
qualitative indications of individual surface-to-surface contact re
sistance behavior. 

This investigation was initiated to provide designers with a di
mensionless correlation for use in predicting overall thermal contact 
conductances of stacks of thin solid layers in high vacuums. 

Experimental Procedure 
A longitudinal heat flow system is normally used to measure the 

thermal conductance of contacts [4, 8-13]: the design criteria for this 
system are described in detail elsewhere [13]. The experimental 
module consists of a heater, two identical stainless-steel flux meters 
with the stack under test mounted between them, and a water-cooled 

heat sink in vertical sequence. The determination of the total con
ductance between the heat-flux meters involves estimating the mean 
steady-state temperature drop between the neighboring end faces of 
the two flux meters A T T O T as well as the corresponding heat flux, Q/A. 
For this system 

CTOT -
A AT/TOT 

(1) 

A stack containing (N — 1) layers held between the faces of the flux 
meters has a total of N contact planes, including the two extreme 
contacts with the flux meters and I (= N — 2) layer-to-layer interfaces. 
Thus, the total resistance is given by: 

RTOT,N = 2RML +(N- l)RB +(N- 2)(flLL)yv-2 (2) 

For a single layer, N = 2 and so 

Thus, 

RTOT,2 = 2RMI + RH 

,„ . (R'VOT.N ~ RTOT,2) _ 
(KLL)N-2 = ——~ RB 

N - 2 

(3) 

(4) 

So the conductance of an interface per unit area for a stack can be 
deduced from measured overall resistances and the bulk resistances 
of thin layers. The latter are very unlikely ever to exceed 10 percent 
of the appropriate total stack resistance, and will in most cases be of 
the order of 1 percent or less [2, 4, 5]. The specimen assemblies con
sidered were of such large lateral dimensions and the mechanical 
loadings high enough that even fifteen layer systems experienced 
lateral heat losses of less than 5 percent of the axial heat current (as 
estimated from the difference between the two flux-meter indica
tions). 

Total thermal conductances were obtained for several stacks [8-10], 
under various loadings (ranging from 104 to 6.5 X 106 Nm"2) , and in 
high vacuums (~10 - 5 torr) in order to inhibit lateral heat losses. 

Dimensional Analysis 
From an analysis of the available experimental data (see Table 1), 

it was decided that the thermal contact conductance of stacks of thin 
layers depends principally upon P, M, t, and ks, i.e., 

CLL = f(P,M,t,ks) (5) 

Using Buckingham's Pi-theorem, equation (5) yielded two-dim-
mensionless numbers, namely 

C* = CuMka and 
P 

p* — — 
M 

' Numbers, in brackets designate References at end of technical note. 

Thus, (CJJJ) can be considered as the effective thermal conductivity 
of a stack which is a significant parameter to facilitate comparisons 
between the behaviors of different multilayer stacks as mechanically 
strong insulators [4, 14]. 

Ideally, at relatively low loads, the hardness M in the analysis 
should be replaced by the effective elastic modulus of the stack (i.e., 
the load divided by the product of the nominal area A and the com
pressive stress). Unfortunately this parameter was not specified in 
the literature for many of the stacks considered. 

Conductance Correlation 
A least-squares straight-line fit was made for the entire population 

of published data including that recently obtained by the authors (see 
Fig. 1): the following relationship emerged 

C* = 3.025 (P*)0-58 (6) 

with a correlation coefficient of 0.96. The success of the correlation 
can be judged by the relatively narrow scatter band, so demonstrating 
the validity of the dimensionless groups chosen for the analysis. Fried 
[21] reviewed critically the correlation and prediction techniques for 
thermal contact conductance of single contacts and observed that 0.66 
< n < 1 for different data sets—depending upon the choice of influ
ential parameters. Some of these correlations showed significant 
scatter [18, 19] which was attributed to ignoring a vital variable. 
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Table I Details of stacks for which experimental data are included in Fig. 1 

M a t e r i a l 

Tool s t ee l 
S t a i n l e s s s t e e l 
Carp 
Razor-Made s t ee l 
Brass 

S t a i n l e s s s t e e l (304) 
S t a i n l e s s s t ee l (302) 
T u f i i o l - p l a t e d s t e e l 

Sindany.-
Mel inex 
P .T .F .E . 
Perspex 
Mica 

G r a i n - o r i e n t a t e d 
e l e c t r i c a l s t e e l 
l a m i n a t i o n 
N o n - o r i e n t a t e d 
e l e c t r i c a l 
larai n a t i o n 

T i n - c . t e d 
s t e e l 

Mica {bonded) 
Laminated board 

(T - 30LR) 

Layer 
Thickness 

t (mm) 

0.672 
0.056 
0.178 
0.108 
0.280 

0.02 
0,10 
0.10 

3,50 
0.175 
2.40 
1.50 
0.02-5 

0.28 

0.35 

0 ,292 

0.076 

1.522 

Roughness 
(urn) 

0.65 
0.37 
0.43 
0.062 
1.18 

-

9.107 
0.427 
2.046 
0 .2 

<0.001 

0.56 

0.331 

1.19 

-

Hardness 
M (GNirf2) 

4.96 
3.20 
0.42 
8.20 
2.03 

1.60 
1.70 
0.43 

0.21 
0.20 
0.02 
0 .22 
0.30 

1.34 

1.84 

0.85 

0.30 

0 .5 

1 
C o n d u c t i v i t y 
o f m a t e r i a l 
o f a l a y e r 
ks (Wm-'K-1 ) 

10.00 
15.00 
0.35 

23.0 
96 .0 

15.95 
13.0 
0.35 

0.70 
0.18 
0.25 
0.30 
0.52 

25.0 

30.0 

45 .0 

0.365 

0.640 

Number o f 
Layers i n 
the Stack 
Considered 

52 
601 
104 
304 
110 

107 
209 
110 

2 
2 
2 
2 
2 

6 

6 

6 

2 

3 

Symbol 
i n f i g . 1 . 

9 
+ 
0 
A 
X 

6 
Q 
V 

D 

k 
V 

0 

<> 

e 

• 
0 

Source o f 
i n f o r m a t i o n 

(Reference 
Number) 

4 

2 

8 

10 

9 

14 

Equation (6) for stacks is similar in general terms to previous cor
relations for single contacts [15-20], i.e., conductance is proportional 
to (load)" but differs in the particular values obtained for the constant 
of proportionality and for the exponent, n. However a strict com
parison between data for single contacts and data for multilayer stacks 
cannot be made because of the differing deformation behaviors for 
stacks: predominantly layer flattening occurs at low loads [3] whereas 
at high loads the mechanism is almost entirely asperity deformation 
[7]. The extents of these regions, depend upon the load applied, ma
terial properties, and upon the loading history of the contact. 

Miller and Fletcher [20] developed a dimensionless equation, which 
correlated data for a variety of metal powders or assemblies of metal 
fibres within a standard deviation of 16 percent. The dimensionless 
expression used, formulated in terms of the physical properties of the 
porous assemblies, is of the form 

Ct [P 
2.335 — 1 [£-4 (7) 

This correlation was extended to permit the prediction of the con
ductance of single layer, metallic shims and foils by setting the po-

Fig. 1 Variation of the dimensionless conductance of an interface with ap
plied loading for various stacks of thin layers in high vacuum. 
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rosity t e rm equal t o zero. T h e expression was s o m e w h a t ana logous 

to the expression developed in t h e p r e s e n t invest igat ion, b u t t h e 

correlation resul ted in the predict ion being u p to 40 pe rcen t different 

from the exper imenta l da ta . 

T h e p resen t dimensionless correlat ion pe rmi t s t h e predic t ion of 

thermal contact conductance for stacks of thin layers in high vacuums 

for a range of dimensionless loading of 10~ 5 < P/M ^ 1 0 _ 1 . 
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u = axial velocity in t h e core or in t h e b o u n d a r y layer 

u = axial b o u n d a r y layer velocity 

UQ = uni form axial velocity a t t h e channe l inlet 

u„ = axial core velocity , 

U = u „ / u o , axial core velocity 

x = axial coord ina te 

X = vxluna2, axial coord ina te 

y = t r ansverse coord ina te 

b = h y d r o d y n a m i c b o u n d a r y layer th ickness 

it = t h e r m a l b o u n d a r y layer th ickness 

f = 5t/S, b o u n d a r y layer shape factor 

M = d y n a m i c viscosity 

v = nip, k inema t i c viscosity 

P = fluid dens i ty 

I n t r o d u c t i o n 
T h e p rob lem of s imu l t aneous d e v e l o p m e n t of velocity a n d t e m 

p e r a t u r e fields in a s t r a igh t channe l wi th uni form wall h e a t flux h a s 

been a t t a cked by various invest igators . H w a n g a n d F a n [ l ] 3 n u m e r 

ically in tegrated t h e energy equat ion using po in t velocities p resen ted 

by Bodoia and Oster le . H a n [2] used a velocity profile which h e de

veloped us ing Langhaa r ' s l inear izing app rox ima t ions . Siegel a n d 

Spa r row [3] employed the K a r m a n - P o h l h a u s e n m e t h o d t o solve for 

the t empera tu re field. They used an approximate m o m e n t u m transfer 

analysis based on t h e appl icat ion of Bernoull i ' s equa t ion t o t h e fluid 

core. Na i t o [4] employed t h e K a r m a n - P o h l h a u s e n m e t h o d to solve 

for the velocity as well as t h e t e m p e r a t u r e field us ing four th order 

polynomials. In the present work, a new analytical solution to t h e flow 

d e v e l o p m e n t p rob lem is used. I t is based on t h e appl ica t ion of m a c -
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rosity t e rm equal t o zero. T h e expression was s o m e w h a t ana logous 

to the expression developed in t h e p r e s e n t invest igat ion, b u t t h e 

correlation resul ted in the predict ion being u p to 40 pe rcen t different 

from the exper imenta l da ta . 

T h e p resen t dimensionless correlat ion pe rmi t s t h e predic t ion of 

thermal contact conductance for stacks of thin layers in high vacuums 

for a range of dimensionless loading of 10~ 5 < P/M ^ 1 0 _ 1 . 
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roscopic mechanical energy equation in the entrance region. The 
temperature field is determined utilizing the Karman-Pohlhausen 
method. 

Analysis 
The flow is idealized as having two regions: a viscous boundary layer 

and an essentially inviscid core. The usual boundary layer theory 
simplifications are applied. The origin of the coordinate system is at 
the leading edge of one of the plates forming the channel with y 
measured toward the axis of symmetry. 

From a generalization of the fully developed velocity profile, the 
following velocity distribution, in terms of variable pressure gradient 
and local boundary layer thickness, is assumed for the hydrodynamic 
entrance region. 

1 dp 
u- (2yS — y2) 

2/x dx 
(1) 

Introducing equation (1) into the macroscopic mass balance 
equation, there results a cubic equation in (5/a) whose physically 
admissible root is 

0- 3(17-1) 

U 
(2) 

Substituting equation (2) back into the cubic equation, the pressure 
gradient is found to be 

dp 

dx' 

_ 2 /IMQ\ 

9 \ a 2 / 

U3 

( f / - l ) 2 (3) 

Alternatively equation (3) can be obtained from equation (1) by 
noting that at y = S, u = u„. The rest of the momentum transfer 
quantities are also expressible in terms of U. Finally the variation of 
U with X is determined from the macroscopic mechanical energy 
equation which yields 

dU 70UH3-2U) 

dX~ ( £ / - 1 ) 2 ( 5 1 3 - 2 9 7 [/) 
(4) 

whence 

594C/2 + 90(7 - 684 - 1517 In (3 - 217) - 1308C7 In U 
X — (5) 

280U 

Equations (4) and (5) show that the flow becomes fully developed, 
i.e., U attains its ultimate constant value of %, asymptotically at X 
= oo. Introducing equation (4) into equation (3) and integrating, we 
obtain 

•• [22TJ2 • 
140 

1 0 ( 7 - 1 2 - 1 5 In ( 3 - 2 1 0 ] (6) 

The point pressures computed from equation (6) are in excellent 
accord with the extensive pressure drop measurements by Beavers, 
etal . [5]. 

Campbell and Slattery [6] employed a similar approach to solve the 
problem of flow development in a circular tube. They assumed a ve
locity profile in terms of 5 and then utilizing the macroscopic mass 
balance, momentum balance and mechanical energy equations de
termined <5, p and u„ in terms of x. The simultaneous application of 
the mechanical energy equation and the momentum equation involves 
a redundancy since the former is derivable from the latter. For this 
reason the present approach entailing the use of the mechanical en
ergy equation alone is more appealing. 

Now that the momentum transfer analysis is complete, we direct 
our attention to the heat transfer analysis. For this purpose, we shall 
utilize the integrated form of the energy equation 

PCp 
d r>i 

dx Jo 
(T - T0) udy = q'± (7) 

where the wall heat flux qfi, is uniform. 
The temperature distribution required in the solution of equation 

(7) is taken to be 

(T - To) imb-m+m'-im (8) 

which is a generalization of the fully developed temperature profile. 
The velocity distribution required in the solution of equation (7) is 
already determined. In the interval 0 < y < <S, u = u(x, y) and the 
interval 6 < y < afi = u«,(x). 

Bearing in mind that for fluids with Pr > 1, &t < <5 and for fluids 
with Pr < 1, dt > i5, we introduce equation (8) together with equations 
(1) and (4) into equation (7), carry out the indicated operations and 
eventually obtain 

UOUX m 

lOf4 - 4 9 ^ + „„ , „ ,,Q = 0 ( P r > l ) (9) 

189f' - 175f< + 

3Pr((7 - l ) 2 

280 UX f 280 UX 1 „, 
70 f'! 

L 3Pr([7-l)2J 
• 7 f + l = 0 ( P r < l ) (10) 

This pair of algebraic equations in conjunction with equations (2) 
and (5) allows the determination of the local thermal boundary layer 
thickness and thence the local temperature via equation (8). 

The heat transfer results will be presented in terms of the local 
Nusselt number defined as Nu = ha/k, where the heat transfer coef
ficient is defined by q"w = h(Tw — Ti,). The local wall temperature can 
be obtained from equation (8) by setting y = 0. The local bulk tem
perature can be evaluated by equating the enthalpy increase of the 
fluid to the total heat transfer rate at the wall. Thus 

Nu 1.8 W PrJ (11) 

Results and Discussion 
The local Nusselt numbers were calculated for nine Prandtl number 

fluids employing equations (9) and (10) together with equation (11). 
They are shown in Fig. 1. An asymptotic value of 35/17 is reached 
when the flow becomes thermally and hydrodynamically developed. 
The previous investigators reported the local Nusselt numbers for the 
Prandtl number range 0.01-1000. In this analysis the Prandtl number 
range 0.01-10,000 is treated. 

Fig. 2 gives a comparison of the analytical predictions for the local 
Nusselt number by various investigators. To avoid crowding of the 
figure, the continuous curves of the present analysis only are shown. 
The point Nusselt numbers of Hwang and Fan [1] are the ones quoted 
by them in their paper. Being impossible to read the numbers ac
curately from the published figures, the point Nusselt numbers at
tributed to Siegel and Sparrow [3] and to Naito [4] were calculated 
using the algebraic equations furnished in their papers. 

In the neighborhood of the origin, Naito's predictions [4] show a 
maximum deviation of 15 percent from the present analysis. The 
predictions of references [1, 3], on the other hand, show a maximum 
deviation of 10 percent. For the most part, the results of the four 
analyses agree within 5 percent. As X tends to <», the predictions of 
the present analysis and those of Hwang and Fan [1] continue to 
display close agreement. However, the predictions of Naito [4] and 
to a lesser extent those of Siegel and Sparrow [3] deviate from the 
present analysis. The reason for this can be traced to the fact that in 
the present analysis as well as in the numerical analysis of Hwang and 
Fan [1], the flow becomes developed asymptotically at X = •». I n the 
analyses of Siegel and Sparrow [3] and Naito [4], on the contrary, the 
flow becomes developed abruptly at a finite distance from the channel 
inlet. 

Conclusion 
Notwithstanding quite different momentum transfer analyses, with 

varying degrees of approximations, employed by them, the local 
Nusselt number predictions of the various investigators are in unex
pectedly close agreement with one another. Therefore, it appears that 
in the entrance region of a straight channel, heat transfer rates are 
rather insensitive to momentum diffusion rates. 
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Fig. 2 Comparison of the local Nusseit number predictions by the various 
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Heat Transfer to Flowing Gas- h = -
Solid Mixtures 7 

M. K. Wahi1 

Nomenclature 
Ca = heat capacity of air 
Cs = heat capacity of solids 
O = test section inside diameter 
h = local heat transfer coefficient 
Nu = Nusselt number (hD/k) 
Nuioi.4 = Asymptotic Nusselt number (at x/D = 101.4) 
q = local heat Flux 
Re = air Reynolds number 
Tmm — mixed mean temperature 
To = temperature at inlet of test section 
Tw

 = tube-wall temperature 
W„ = air flow rate 
Ws = solids flow rate 
x = axial distance 

Introduction 
The behavior of flowing fluids with suspended solid particles has 

been studied for many years. Depew [l]2 studied the flow up the 
vertical, configuration (A), in quite detail. His experimental results 
were confirmed by Rajpaul [2], using an almost identical apparatus. 
The cited publications and the previous related work were summa
rized excellently by Soo [3]. Using the same apparatus as Rajpaul [2] 
this author investigated the effect of test section orientation, namely 
flow down the vertical (B) and horizontal (C), and compared the re
sults of the three configurations [4]. More recently, a detailed technical 
review of the subject was published [5] without discussing reference 
[4] work. This note very briefly reviews that work. 

Experimental Apparatus and Techniques 
Flow System. The experimental apparatus used in this investi

gation is shown schematically in Fig. 1. 
The 80-in. long test section consisted of type 304 stainless-steel 

seamless tubing, 18 mm ID by 0.508 ± 0.075-mm wall thickness. The 
electrically heated test section was instrumented with 18 pairs of 
spot-welded Iron-Constantan 30 gauge thermocouples. The range of 
variables involved was two constant air-Reynolds numbers, 15,000 
and 30,000; three sizes of spherical glass particles, 30, 62, and 200 
micron (n) and solid loading ratios of 0-10 kg/kg. The glass micro
spheres were added to the air-stream from a weighing hopper at a 
controlled rate, and they were returned to a storage hopper by a 
double effect cyclone separator. Operation of the system was quasi-
steady, with the steady period of operation dependent on the solids 
rate. 

Three different test section arrangements were tested with flow 
direction being vertically up, vertically down or horizontally. These 
arrangements would be referred to as configurations A, B, or C, re
spectively. The air alone runs were made for all three configurations. 
However, since sufficient data had already been taken by Depew [1] 
and verified by Rajpaul [2] in details for the configuration A, it was 
unnecessary to make air-solid runs for this arrangement. Comparable 
data were taken for the arrangements B and C and then the results 
of all three orientations were compared. 

Analysis of Results. The local Nusselt number, hD/k, is based 
on the local heat transfer coefficient, which is defined by: 
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Company, Renton, Wash. 

2 Numbers in brackets designate References at end of technical note. 
Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division May 19, 1976. 

Tmm is the mixed-mean temperature that would exist if the phases 
were in thermal equilibrium and is based upon an energy balance: 

The heat flux is assumed to be uniform since the tube electrical 
resistivity is nearly constant, the heat loss is a small part of the total 
heat transferred, and the tube wall conduction is estimated to be 
negligible. The Reynolds number is always based on the mean flow 
rate and physical properties of the air. The air properties were eval
uated at arithmetic average of the inlet and outlet mixed-mean 
temperatures in the test section. 

Results and Discussion 
Heat Transfer with 30 ii Particles. Nusselt number ratios (ratio 

of local value of Nu to Nu at x/D = 101.4) are presented in Fig. 2 as 
a function of axial distance for high and low loading ratios with the 
air Reynolds number held constant at 15,000. Comparable results 
from [2] for the configuration "A" are also plotted in Fig. 2. These 
results are typical of the various runs made at this air rate and they 
show the essential characteristics of the system performance. Fig. 3 
is similar to Fig. 2 and shows comparable data for A and B at the 
higher Reynolds number. Unfortunately for case C, data at higher 
Reynolds number could not be taken due to difficulties with the solids 
feed valve. Fig. 4 is a plot of the asymptotic Nusselt number as a 
function of solids loading ratio with the comparable results from [2] 
also shown. Fig. 4 also shows similar curves for Re = 30,000 for A and 
B. The curves drawn through data for configuration A are also re
produced from [2]. 

It is observed from Figs. 2 and 3 that the thermal-entry length is 
more sensitive to variation in the loading ratio than it is to a variation 
in Reynolds number. Also note that the prolonged thermal-entry 
length effects are not so pronounced for configurations B and C as for 
A, but the trend is qualitatively the same. 

Similarly Fig. 4 shows that the decrease in Nusselt number is not 
as profound for B and C as far A, the qualitative trends being same 
in all three configurations. A minimum value of 25 is reached at a 
loading ratio of 0.9 to 1.0 in case A while it decreased only to 30-32 
in cases B and C. Calculations showed that, on the average, the 
Nusselt number levels for case B were higher than for case A by 15 
and 25 percent, respectively, for Reynolds numbers of 15,000 and 
30,000. For case C the results were 13 percent higher at 15,000 
Reynolds number than for case A. 

Heat Transfer with 62 and 200 n Particles. For reasons of 
brevity the plotted results are not shown here and may be found in 
reference [4]. For 62/i the Nusselt number levels differed by only 2 
percent from A to B or A to C, well within the experimental error ±4.5 
percent. At higher Reynolds number the level of Nusselt numbers is 
about 7 percent higher for B and C than for A, but the change in 
Nusselt number is minimal. Thus, qualitatively, the trend is the same 
for all three configurations. For 200yu the comparison of results indi
cated that within experimental error (±4.5 percent) there is no sig
nificant difference in the results for three arrangements. The average 
difference in Nusselt number levels was 2.5 percent at lower Reynolds 
number and 9 percent at higher Reynolds number. 

Particle-Size Effects on Heat Transfer. Fig. 5 shows the heat 
transfer results in terms of particle size effects for configurations B 
and C at both Reynolds numbers. The trends do show that effect on 
Nusselt number with varying loading ratio is most significant for 30/̂  
and least significant for the 200^ particles. This is in agreement with 
the known results for the case A. 

Discussion. For vertical flow directions, A and B, the direction 
of flow should have little effect, if any, on the turbulent transport of 
heat to the mixture, and the only expected effect is that due to resi
dence time for the particles to absorb heat from the air. When the 
mixture is flowing upward, (A), the solids travel approximately 10 
percent slower than air while in downward flow (B) the solids velocity 
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is about 10 percent greater than the air velocity. Thus, the solids have 
somewhat greater time for heat transfer in case A, and this additional 
residence time should allow them to approach better thermal equi
librium with the air than in case B. 

Based on the foregoing discussion, less variation in the Nusselt 
numbers should be expected for A than for B. This is contrary to the 
observed effects, Fig. 4, where local Nusselt numbers were always 
higher in case B than in case A, i.e., better thermal equilibrium was 
achieved in case B. Several possibilities exist for this discrepancy. The 
stratification effects observed by Van Zoonan [5] for the vertical flow 
might be different for configurations A and B. Bouncing flow obser
vation made by Bagnold, Adam, and Wen, as reported in [5] were 
different for different particle size and may very well be different for 
different flow orientations. 

Stratification effects were expected in case C where the solid par
ticles should flow touching the lower surface of the tube due to their 
own weight. This should have resulted in one side of the tube being 
much cooler than the other. This effect was observed, however, for 
both side to side and top to bottom with the temperature difference 
variation from 6 to 36°F. An investigation revealed improper align
ment of the test section with a sag being present in the tube. The test 
section was realigned within half a diameter and all data runs were 
repeated. The recorded difference in temperatures of tube-top and 
bottom was now insignificant. This leads one to believe that while test 
section alignment is critical, the asymmetry caused by transverse 
gravity may not be important. 

The above observation is, of course, contrary to known experimental 
results for 30/K particles as reported in [5]. Perhaps, even half a di-
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ameter crookedness in alignment was important and should have been 
checked. The results for 200/j particles are, however, in agreement 
with those shown in [5]. The observed differences in heat transfer 
results between A and C configurations are close to the experimental 
error range (±4.5 percent), but the trend does indicate less variation 
in heat transfer for C than for A. 

Conclusions. The subject is far from being unified and the com
plicated interactions between fluid and particle, particle and particle, 
and the mixture and the flow boundary need to be better understood. 
The following conclusions are based on the experimental results 
presented in this paper and reference [4] and are subject to verification 
or modification with further research. 

1 The fully developed Nusselt number, after an initial decrease 
(as compared to the air only value) up to a loading ratio of about 1.0, 
shows significant increase with further solids loading, in case of 30 
micron particles. The rate of increase in the Nusselt number is higher 
for 15,000 Reynolds number. The effect of 62/i particles is minimal, 
a small increase in heat transfer observed beyond a loading ratio of 
3.0. Addition of 200M particles did not affect the heat transfer. 

2 The thermal entry length is substantially increased with in
creasing solids addition. This effect is the most profound for 30 micron 
size. 

3 The Nusselt numbers are higher by 2-25 percent for orientation 
B (DOWN) than for orientation A (UP), indicating better thermal 
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equilibrium for B. Similarly, the orientation C (horizontal) results 
are higher than those of A by 2 to 13 percent again indicating more 
stable heat transfer for C. 

4 The observed differences in heat transfer due to test section 
orientation are somewhat offset by experimental error and are 
therefore more of a qualitative nature. 

5 Accurate test section alignment is critical. 
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An Analysis of Steady Fully 
Developed Heat Transfer in 
A Rotating Straight Pipe 
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Introduction 
Barua [l]2 examined the laminar flow of an incompressible liquid 

through a pipe of circular cross section, when the pipe is rotated about 
an axis perpendicular to it with an uniform angular velocity. His 
analysis has been extended for the flow through an annular pipe [2]. 
His solution for the velocity field was based on the work of Dean [3, 
4] for flow in a curved pipe. The analogy between these two flows 
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motivated us to study the heat transfer in a thermally fully developed 
laminar flow in a rotating straight pipe, following the work of Tyagi 
and Sharma [5] for the flow in a curved pipe. 

Statement of the Problem 
We consider the steady laminar flow of an incompressible liquid 

under the action of a constant pressure gradient through a pipe of 
circular cross section of radius a, rotating with an uniform angular 
velocity 0' about an axis perpendicular to the axis z' of the pipe. The 
solution of the two coupled differential equations in <j> (stream func
tion) and w corresponding to the secondary and primary flow is ob
tained as a perturbation in terms of Taylors number T = 20'a2/c, and 
is given in [1, 2]. For this laminar flow, we examine the steady-state 
fully developed heat transfer effected by a heat source (sink) distri
bution in the wall material. In our analysis, we assume: (1) the velocity 
and temperature fields are fully developed; (2) the flow is laminar; 
(3) variations of physical properties are negligible; (4) secondary free 
convection effects are negligible; and (5) viscous dissipation is taken 
into account. We assume the following thermal boundary condition 
valid for small values of the thermal conductivity of the wall or when 
the wall is of very small thickness: normal temperature gradient at 
solid-liquid interface is constant in both the circumferential and the 
longitudinal direction. This condition was used by Tyagi and Sharma 
[5] for a similar problem in circular curved ducts. 
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equilibrium for B. Similarly, the orientation C (horizontal) results 
are higher than those of A by 2 to 13 percent again indicating more 
stable heat transfer for C. 

4 The observed differences in heat transfer due to test section 
orientation are somewhat offset by experimental error and are 
therefore more of a qualitative nature. 

5 Accurate test section alignment is critical. 
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Introduction 
Barua [l]2 examined the laminar flow of an incompressible liquid 

through a pipe of circular cross section, when the pipe is rotated about 
an axis perpendicular to it with an uniform angular velocity. His 
analysis has been extended for the flow through an annular pipe [2]. 
His solution for the velocity field was based on the work of Dean [3, 
4] for flow in a curved pipe. The analogy between these two flows 
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motivated us to study the heat transfer in a thermally fully developed 
laminar flow in a rotating straight pipe, following the work of Tyagi 
and Sharma [5] for the flow in a curved pipe. 

Statement of the Problem 
We consider the steady laminar flow of an incompressible liquid 

under the action of a constant pressure gradient through a pipe of 
circular cross section of radius a, rotating with an uniform angular 
velocity 0' about an axis perpendicular to the axis z' of the pipe. The 
solution of the two coupled differential equations in <j> (stream func
tion) and w corresponding to the secondary and primary flow is ob
tained as a perturbation in terms of Taylors number T = 20'a2/c, and 
is given in [1, 2]. For this laminar flow, we examine the steady-state 
fully developed heat transfer effected by a heat source (sink) distri
bution in the wall material. In our analysis, we assume: (1) the velocity 
and temperature fields are fully developed; (2) the flow is laminar; 
(3) variations of physical properties are negligible; (4) secondary free 
convection effects are negligible; and (5) viscous dissipation is taken 
into account. We assume the following thermal boundary condition 
valid for small values of the thermal conductivity of the wall or when 
the wall is of very small thickness: normal temperature gradient at 
solid-liquid interface is constant in both the circumferential and the 
longitudinal direction. This condition was used by Tyagi and Sharma 
[5] for a similar problem in circular curved ducts. 
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Analys i s 
The equation for the temperatue distribution t' for the flow under 

consideration, is 

h = t20(r) + t22(r) cos 20 (15) 

, o r /dw\2 /l dw'\2~\ 

The thermal boundary condition is 

dt' 

dr' 
• /} at solid-liquid interface, 

(1) 

(2) 

The expressions for tn ( r ) and t-2o(r) are lengthy and so are not re
ported here. The expression for t2'A>') is not needed in our analysis. 

H e a t T r a n s f e r Coef f i c i en t s 
The average Nusselt number Nu, defined by equation (42) of [5], 

gives 

where j3 is a constant and is positive or negative according as the wall 
of the pipe contains heat source or sink distribution. 

We use the nondimensional quantities [2] defined by 

Nu = -
2a Idr'lu 

ft \Xwa £m ) 
(16) 

ca2 ca3 

r' = ar, z' = az, w' = w, 4> = <t> 
4pu ipv 

dt' dtw' 

dz' dz' 

ca3 

dtm' , 

dz' 
•t< 

t'-tn 

R = (Reynolds number) 
Apv'2 

20.'a? 
T = (Taylors number) 

B--
p" MCP (Prandtl number) 

p2a3kp' k 

B = J5R2 (Dissipation number) 

Then (1) becomes, 

„n[ld(<l>,t) 1 r / d u ) \ 2 / l dun 21 
V2t = PR ^ - t + wm \-B ( — ) + ( ) 

Ir d(r,B) J LVd/7 \r dO/ J 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(the suffix a is the mean value along the cross-sectional bound
ary) 

Under the present nondimensionalization scheme, equation (16) 
transforms to 

Nu = — = 2[t„(l) + T2 t2 ( )(l)]-

( 1 - T 2 J ) + - J 3 ( 1 - T 2 J ) 
2 

(IV) 

where 

J = 
1 

• + -
11R2 R2P 

242 -20 962 • 8 • 2240 962 • 482 • 700 
(3985 + 11310P) (18) 

and 

J = 
1 31R2 R2P 

subject to 

dr 
- = 1 at r = 1, tm = 0 

5 • 242 962 • 242 • 560 962 • 482 • 700 

The longitudinal temperature gradient is given by 

m* = RPm = 4(1+ A,B + A2T
2) 

(-2520 + 4410P) (19) 

(20) 

and t is finite at all points r in the tube (the suffices m and w in the 
foregoing equations represent the mean value over cross-sectional 
domain and value at solid-liquid interface, respectively). In the 
foregoing equations, m is the longitudinal temperature gradient and 
c is the modified pressure gradient along the axis of the pipe [1]. 

Using T as perturbation parameter in series for the temperature 
t and the longitudinal temperature gradient m in the form 

where 

4 , = 1-

1 

T2 

4-242 

R2 

• + -
2304 4128768 

(21) 

t = t0 + T i i + T 2 i 2 + . . • 

m = mo + Tmi + T'2m2 + . . 

If Q and Qo represent the mass flow rate for a rotating pipe and for 
straight pipe, we have from [1, 2] 

(10) 

and making use of the velocity field given in [1, 2], we obtain the so
lution of the equation (9). 

The solutions corresponding to the straight pipe when T = 0, are 

4 

and 

o(l - T2A2) 

m* = 4[1 + AtB + Q0-HQo ~ Q)] 

(22) 

(23) 

and 

m o - - ( l + B ) 

t0 = — ( - 5 + 12r2 - 3;-4) + - ( -2 + 6r2 - 3H) 
12 6 

(11) 

(12) 

The solutions for the rotating pipe have been calculated to the 
second order of approximation in T. For our purposes, it is sufficient 
to note that 

D i s c u s s i o n 
A qualitative picture of rotating pipe convective heat transfer is 

given on the basis of the analytical results (17) and (20). The results 
hold good for T < 33.8 and R < 35.3, which is apparent from the sec
ond order perturbation solution for velocity field [1]. 

When B = 0 (no viscous dissipation), 

N u : 
1 - T 2 J 

mi = 0, 
and 

m2
 : 

242 Ml • P R L 
• B + -

R2 ~ 

162-7_ 

Also, we obtain 

ti = Rtn(r) sint 

(13) 

(14) 

•• 4(1 + A2T
2) 

(24) 

(25) 

and 

Since J is positive, as Prandtl number is positive, it follows that the 
Nusselt number is higher: (1) at greater than at smaller Taylors 
number and (2) at greater than at smaller Prandtl number. In general 
the effect of rotation is to increase the Nusselt number and the lon-
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gitudinal temperature gradient for any value of the dissipation 
number B. 

To seek the effect of viscous dissipation B, it is found more con
venient to study the ratio of the Nusselt number in a rotating pipe to 
that in a straight pipe, i.e., Nu/Nuo. 

Nu 2 + B 

Nu0 ( 1 - T 2 J ) ( 2 + T2J+) 

where 

J+-
1 - T V 

1 - T 2 J 

(26) 

(27) 

This ratio is independent of the Reynolds number, for a curved pipe 
[5], while it is found to be dependent on it in this case. 

For a given R, there exists a critical Prandtl number P = P c (given 
by the positive root of the equation, J = J), at which value, this ratio 
Nu/Nuo remains uneffected by viscous dissipation. 
Whenever, 

P > P C , J < J a n d J + > l 

P = PC,J = J a n d J + = l 

P < Pc , J > J and J+ < 1 

(28) 

(29) 

(30) 

Fig. 1 shows that this critical Prandtl number decreases as R in
creases. 

For a fixed R, as B increases through positive values, this ratio 
decreases or increases according as P > or <PC for a fixed T. Fig. 2 
shows the plot of this ratio Nu/Nuo versus the Taylors number T at 
the same set of values of the dissipation number B but at different 
fixed values of the Prandtl number. The order of the reversal of curves 
for P > P c and P < P c is strikingly opposite to that for a curved pipe 
[5]. Analytically this is because of the equations (28)-(30). 

Fig. 3 shows that the effect of viscous dissipation for a fixed T, is 
to increase the longitudinal temperature gradient as B increases 
through zero. 
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Prediction of Local Heat 
Transfer on a Rotating Disk By 
a Two-Equation Model of 
Turbulence 

B. i. Sharma1 

Nomenclature 
Cf,, Ci, C% Cg = constants in the turbulence model 
k = turbulent kinetic energy 
fi = stagnation enthalpy 
Nu = local Nusselt number 
p = static pressure 
;• = radial distance from axis of symmetry 
Re = tcrx/v, spin Reynolds number 
Re( = value of Re at which transition occurs 
R, = turbulent Reynolds number, k2/ue 
U = velocity in the x -direction 
W = velocity in the 2-direction 
Vn = circumferential direction 
x = coordinate measured along the surface 
2 = coordinate measured normal to the surface 
t = dissipation rate of turbulence energy 
0 = circumferential coordinate 
p = dynamic viscosity 
11 = kinematic viscosity 
p = density 
a = Prandtl number 
uj = rotational speed 
T = thermal diffusivity 

Introduction 
The turbulent flow near a rotating disk in stagnant surroundings 

was recently computed and compared with experimental data by 
Launder and Sharma [l].2 The main conclusion drawn in [1] was that 
the application of energy-dissipation model of turbulence generally 
leads to satisfactory predictions of momentum and average heat and 
mass transfer in the neighborhood of a rotating disk. The correct 
prediction of local quantities provides a more severe test of the validity 
of a turbulence model. The present contribution, therefore, deals with 
the local rather than average heat transfer computations using the 
energy-dissipation model of turbulence. 

The availability of reliable experimental data is of major impor
tance in the effort to develop and test universal turbulence models. 
The experimental data, especially of local quantities, near spinning 
surfaces are very scarce. Koosinlin [2] made a critical evaluation and 
assessment of the available experimental data for flows near rotating 
solid boundaries. Indeed, Koosinlin made attempts to measure local 
heat transfer near a rotating disk, but had to abandon efforts due to 
experimental difficulties. The detailed account of such matters ap
pears in [2]. As far as the writer is aware, the only other local Nusselt 
number data on a rotating disk are those reported in [3] and [4]. The 
more recent local Nusselt number measurements of Popiel and Bo-
guslawsky [4] are the only complete experimental data; they include 
laminar, transitional and turbulent regimes up to spin Reynolds 
number of 6.5 * 105. The present paper thus compares the predictions 
of local heat transfer by a turbulence model based on the solution of 
transport equations for the turbulence kinetic energy and its local rate 
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of dissipation with the data of Popiel and Boguslawski. Agreement 
with the experimental data is generally very good. 

Governing Equations and the Turbulence Model 
The boundary layer forms of the mass, steamwise and swirl mo

mentum equations for a uniform-property, axisymmetric turbulent 
flow may be written: 

d(rU) d(rW) 

dx dz 
0 

8U dU 
pU—+pW-dx dz 

d(rV„) 
pU^-^-+ pW 

dx 

dx 

d(rV„) 
dz 

1 d r aui pv,, 
r dz L 02 J r 

T , d(V0/r)-\ l__d_ 

r dz 

(1) 

(2) 

(3) 

Heat transfer rate from the surface is computed by solving the fol
lowing equation for stagnation enthalpy h: 

PU—+ PW—> 
dx dz 

l_d_ 

r dz 

f" Meff dh "I 

L <7eff dzl 
(4) 

The effective viscosity of the fluid Meff, is taken as the sum of the 
molecular and turbulent contributions, i.e., 

Meff = M + lit (5) 

The effective Prandtl number ae{t, is related to the molecular and 
turbulent values by 

Meff _ (1 ft (6) 
"eft' a «t 

The preceding equation rests on the supposition that the effective 
transport coefficient for enthalpy is the sum of molecular and tur
bulent values. 

The turbulent transport coefficients pt and Tt are obtained from 
the following system of differential and auxiliary equations. 

Pi = C^pk^lt 

r, = p,/o.9P 

(7) 

(8) 

Equation (8) implies that the turbulent Prandtl number is equal to 
0.9. The works of Kestin and Richardson [5] and Patankar and 
Spalding [6] support this hypothesis for wall boundary layers. 

The two turbulence quantities k and t are obtained from the fol
lowing pair of transport equations that are solved simultaneously with 
those governing the mean flow behavior: 

dk dk 1 d 
PU— + pW— = 

dx dz r dz 

dx dz r dz 

+ Ci-

dkl'\-i 

TIA^ +(''^r; rC2T 

(9) 

(10) 

where 

C„ = 0.09 exp [-3.4/(1 + fl,/50)2] 

C2 = 1.92 [1.0 - 0 . 3 exp (-fl,2)] 

and Rt = pk2/pe, the turbulent Reynolds number. The other empirical 
coefficients take the following uniform values: 

Ci = 1.44; 1.0; 1.3 

The foregoing system of equations differ from that in [7]. Extra 
source terms involving the gradients of (Voir) appear in the equations 
for k and e. They are not ad hoc terms; their appearance is due to the 
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conversion of the Cartesian-tensor form of these equations to the 
present coordinate system. All the coefficients take the above values 
on the basis of extensive computer optimization as reported in [1], [8] 
and the author's extensive numerical experimentation with a wide 
variety of flow situations [9], including e.g., flow over a flat plate; high 
and low Reynolds number flows in pipes and rectangular channels; 
flow between converging plates (sink flows). 

The boundary conditions to be satisfied by the foregoing equations 
are as follows: 

2 = 0: U = 0; Vo = ru; h = h„a\\ 

k = e = 0 

z = zedge: U=Vii = k = e = 0 

Detailed discussion about the present boundary conditions appears 
in [7] and [8]. 

The foregoing system of equations have been solved by an adapted 
version of the Patankar-Spalding [6] finite difference scheme as 
outlined in [10]. Seventy nodes were used to span the boundary layer 
with a substantial concentration very near the wall. The forward step 
used was typically 15 percent of the boundary layer thickness leading 
to computer times per run of about 50 S on a CDC 6600 computer. 

Discussion of Predictions 
The numerical predictions of local Nusselt number using the 

present turbulence model are compared with the experimental data 
of Popiel and Boguslawski [4] in Fig. 1. To make accurate predictions 
of Nusselt number, the Reynolds number Re< at which the flow be
comes turbulent must be prescribed. When the distance x is so small 
that the spin Reynolds number is less than Re(, the flow is taken as 
laminar and only the mean flow equations are solved. Consistent with 
the previous practices of equations [8] and [10] the turbulent Reynolds 
number was taken as 2-4 X 10s. Agreement of predictions with the 
local Nusselt number data is satisfactorily close over the entire 
Reynolds number range explored. In the experiment with laminar 
boundary layer, the disk surface was maintained almost isothermal; 
with transition boundary layer, it was isothermal within ±1.5 percent; 
and with the turbulent boundary layer, it was isothermal within ±3 
percent. The predictions for the turbulent regime are within this ±3 
percent deviation with the present turbulence model. The small de
viation of the measurements at low Reynolds numbers from the 
predicted values is probably due to the free convection effects having 
been neglected in the predictions. 

Fig. 1 Local heat transfer from a spinning disk in still air 
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P,. = Prandtl number 
q,„ = local heat transfer rate at wall 
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RQ = radius of outer surface of film 
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R.rmin = value of R* at which hmm occurs 
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conversion of the Cartesian-tensor form of these equations to the 
present coordinate system. All the coefficients take the above values 
on the basis of extensive computer optimization as reported in [1], [8] 
and the author's extensive numerical experimentation with a wide 
variety of flow situations [9], including e.g., flow over a flat plate; high 
and low Reynolds number flows in pipes and rectangular channels; 
flow between converging plates (sink flows). 

The boundary conditions to be satisfied by the foregoing equations 
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Detailed discussion about the present boundary conditions appears 
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The foregoing system of equations have been solved by an adapted 
version of the Patankar-Spalding [6] finite difference scheme as 
outlined in [10]. Seventy nodes were used to span the boundary layer 
with a substantial concentration very near the wall. The forward step 
used was typically 15 percent of the boundary layer thickness leading 
to computer times per run of about 50 S on a CDC 6600 computer. 

Discussion of Predictions 
The numerical predictions of local Nusselt number using the 

present turbulence model are compared with the experimental data 
of Popiel and Boguslawski [4] in Fig. 1. To make accurate predictions 
of Nusselt number, the Reynolds number Re< at which the flow be
comes turbulent must be prescribed. When the distance x is so small 
that the spin Reynolds number is less than Re(, the flow is taken as 
laminar and only the mean flow equations are solved. Consistent with 
the previous practices of equations [8] and [10] the turbulent Reynolds 
number was taken as 2-4 X 10s. Agreement of predictions with the 
local Nusselt number data is satisfactorily close over the entire 
Reynolds number range explored. In the experiment with laminar 
boundary layer, the disk surface was maintained almost isothermal; 
with transition boundary layer, it was isothermal within ±1.5 percent; 
and with the turbulent boundary layer, it was isothermal within ±3 
percent. The predictions for the turbulent regime are within this ±3 
percent deviation with the present turbulence model. The small de
viation of the measurements at low Reynolds numbers from the 
predicted values is probably due to the free convection effects having 
been neglected in the predictions. 

Fig. 1 Local heat transfer from a spinning disk in still air 
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Nomenclature 
c = specific heat 
D;, = hydraulic diameter of film, 2(RU

2 — Rc
2)/Rc 

F r = Froude number, Uo2/gDi, 
g = gravitational acceleration 
h = local heat transfer coefficient' 
h = dimensionless heat transfer coefficient, (h/k)(u2lg)113 

hmm = minimum value of h along surface 
hfd = constant value of h in fully developed flow 
k = thermal conductivity 
P,. = Prandtl number 
q,„ = local heat transfer rate at wall 
RL. = radius of cylindrical surface 
RP = Reynolds number,1 uuDi,/i> 
RQ = radius of outer surface of film 
Rv = Reynolds number based on x 
R.rmin = value of R* at which hmm occurs 
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T = temperature 
Tm = local mean temperature in film 
T„, = wall temperature 
T() = initial uniform temperature of film 
Uo = initial uniform velocity in film 
x = coordinate down surface 
x = x/Dh 

xm\n - value of x at which ftm;n occurs 
Ax tran = transition length as defined in Fig. 4 
;x = coefficient of viscosity 
i< = kinematic viscosity 

Introduction 
In some industrial processes, cooling is achieved by running a liquid 

film over a cylindrical surface, the flow originating at a shaped nozzle 
so that the initial velocity distribution is essentially uniform. Local 
heat transfer rates in this type of flow have been investigated in the 
present study. Since the flow originates from a shaped nozzle, it is to 
be suspected that the flow near the nozzle will be laminar, that un
steady "wavy" flow will develop and transition to turbulent flow will 
then occur. Because of the presence of these various types of flow in 
the film, comparatively large variations in the local heat transfer rate 
along the surface are to be expected. 

If the flow is assumed to be axially symmetrical, the local heat 
transfer coefficient at any distance x down the surface from the nozzle 
will be given, in general, by 

Model Support 

Sr 

h = function (p, uo, Dh, M, k, g, c, Rc, x) (1) 

It should be noted that the local heat transfer coefficient is based on 
the difference between the local wall temperature, Tm, and the local 
mean temperature in the film, T,„. In this respect, it differs from the 
heat transfer coefficient as usually defined for evaporating or con
densing film flow where the outer surface of the film is essentially at 
the boiling temperature of the liquid and the difference between the 
wall temperature and the boiling temperature is, therefore, used in 
defining h. In film flow with no phase change, which is the situation 
being studied in the present work, the temperature of the outer edge 
of the film is not, of course, known. 

Applying dimensional analysis to equation (1) and rearranging the 
result in terms of conventionally used dimensionless parameters 
gives 

h = function (R,., P,., x, F,., RJDh) (2) 

Note that R(, as defined in the Nomenclature is equivalent to AT/ii 
where r is the mass flow rate per unit surface length. 

Far downstream of the nozzle, the flow in the film becomes fully 
developed and when this state is reached h will cease to vary with 
distance along the surface, i.e., with x, and will cease to depend on the 
initial conditions at the nozzle exit and thus must cease to depend on 

Most previous work on heat transfer to falling films has been con
cerned with evaporating films, [1, 2]:! reviewing much of this work. 
In most of these studies the film has originated at a weir or similar 
device so that the nature of the flow in the development region is very 
different from the flow being considered in the present study. Previous 
work on heat transfer to nonevaporating films is reviewed in reference 
[3], most available measurements being for fully developed films. 

Apparatus 
The apparatus used in the present study is shown diagrammatically 

in Fig. 1. The main reservoir, Si, contained distilled water. A cooling 
coil, through which tap water was circulated, in this tank kept the 
distilled water at a constant temperature during a test. The water from 
Si was pumped to the upper vessel S2 from which it drained through 
the nozzle, N, and over the outer surface of the heated cylinder, C, into 
vessel S3 and from there back into S\. The water level in S 2 was con-

3 Numbers in brackets designate References at end of technical note. 

Fig. 1 Layout of apparatus 

trolled by means of valve V\, the pump running at constant speed. 
The water flow rate and, hence, the initial velocity at the nozzle exit 
plane, could be found by closing valve V2 and measuring the rate at 
which water collected in S3. Alternatively the initial, velocity could 
be calculated from the measured water depth, H, in S 2 by assuming 
that there was no losses across the nozzle. The results given by the two 
procedures were essentially identical. 

Four nozzles were used in the present study, these having diameters, 
D, of 38.1, 34.9, 31.8, 28.6 mm. They were made of brass and were 
cleaned frequently during the test program. This, together with the 
use of the screen, Sc, around the nozzle as shown in Fig. 1 and careful 
positioning of the model so that it was concentric with the nozzle, 
insured that the water film on the model was nonswirling and uniform 
around its circumference. 

Two models were used, these having diameters of 25.4 and 19.1 mm. 
Both models were about 370-mm long. The cores of the models were 
made of plexiglas with copper electrode blocks-near the top and bot
tom. A 0.025-mm thick nickel sheet was bonded to the surface of the 
plexiglas between the electrodes and the ends of this nickel sheet were 
clamped between the electrodes and the plexiglas with sufficient 
pressure to insure good electrical contact. Heating was then achieved 
by passing an electrical current through the nickel sheet, contact to 
the supply being made through the electrodes. A series of thermo
couples were mounted in the plexiglas with their junctions at the 

, surface beneath the nickel sheet and in contact with it, the thermo
couple leads being brought out internally through the bottom of the 
model. The model was mounted with the top of the heated section on 
the nozzle exit plane. Estimates were made of the temperature drop 
across the nickel sheet and this was found to be negligible. It was also 
found that the thermocouples junctions were in sufficiently good 
contact with the underside of the nickel sheet for them to give a 
reading essentially equal to the local surface temperature of the 
sheet. 

In order to obtain the heat transfer coefficients, the heat transfer 
rate was found from the measured electrical power dissipation, the 
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Table 1 

TEST 
NO. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

NOZZLE 
DIAMETER 

mm 

34.1 

38.1 

38.1 

34.1 

34.1 

28.6 

28.6 

28.6 

28.6 

28.6 

28.6 

28.6 

MODEL 
DIAMETER 

mm 

25.4 

25.4 

25.4 

25.4 

25.4 

25.4 

25.4 

25.4 

25.4 

25.4 

19.1 

19.1 

R 
e 

33,670 

56,800 

46,450 

46,620 

37,510 

24,850 

20,110 

28,460 

31,780 

25,770 

62,600 

70,^0 

F 
r 

6.40 

6.72 

4 .56 

13.03 

8.31 

14.58 

9.42 

17.60 

21.87 

14.04 

5.93 

7.65 

P 
r 

5.39 

5.45 

5.49 

5.57 

5.52 

5.54 

5.51 

5.29 

5.28 

5.21 

5.10 

5.10 

Dh 
R 
C 

1.781 

2.500 

2.500 

1.781 

1.781 

1.125 

1.125 

1.125 

1.125 

1.125 

3.556 

3.556 

2x10 

10 5 

0.3 

^min 

0.2 

or 

-<f 

o 

O - ' ,~o- o 
00 a . - - ' © 

c® 

0 0 3 O 
o 

, o © 

o 

surface temperature was obtained from the thermocouple readings 
and the local mean temperature in the water film at any distance down 
the model was found by applying an energy balance up to that point, 
the initial water temperature being measured in S2. 

Experimental Results 
All tests were carried out with heating currents that gave an average 

model surface temperature of about 5°C above the inlet water tem
perature, the actual local surface temperature depending, of course, 
on the distance from the nozzle, on the nozzle size and on the initial 
velocity. Although a large number of tests were carried out, attention 
will here be restricted to those listed in Table 1, these being typical 
of all the tests. In evaluating the parameters listed in this table, fluid 
properties have all been evaluated at the mean water temperature in 
the film. Prom Table 1, it will be seen that the results cover a Reynolds 
number, Re, range of approximately 20,000-70,000, a Froude number, 
F r , range of about 5-20 and a Prandtl number, P r , range of about 
5.1-5.6. Significant effects due to variations in ~Pr, are not, therefore 
to be expected. 

Typical variations of dimensionless heat transfer coefficient with 
distance along the surface are shown in Fig. 2, the general form of this 
variation being the same in all cases. The heat transfer coefficient 
drops from a high value near the nozzle exit to a minimum value, then 
rises quite sharply and then levels off, rising only slowly with distance 
along the surface. Thus, the heat transfer coefficient distribution can 
be split into three regions. The first, from the nozzle exit to the point 
of minimum heat transfer, corresponds to laminar and wavy laminar 
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Fig. 2 Typical variations of heat transfer coefficient with distance down 
model 
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Fig. 3 Variation of derived parameters with Reynolds number 

flow in the film, the wavy flow being visually observed. The second, 
the region of comparatively rapid rise in the value of the heat transfer 
coefficient downstream of the point where it passes through a mini
mum, corresponds to transitional flow in the film, while the third 
region, that involving a comparatively slow rise in the value of heat 
transfer coefficient, corresponds to fully turbulent flow, the rise being 
due to the developing nature of this flow. The values of h tend, of 
course, to the constant values applicable to fully developed turbulent 
flow but the length of model used in the present work was not suffi
cient for this fully developed state to be reached. 

Three important parameters connected with the observed heat 
transfer coefficient distribution, are, therefore 

(i) The minimum value of the dimensionless heat transfer coef
ficient, hmm. 

(ii) The distance downstream of the nozzle at which this minimum 
heat transfer coefficient occurs, xmin. 

(iii) The transition length, Axtmn, as defined in Fig. 2. 
Values of these three parameters have been determined from the 

experimentally obtained variation of h with x for each test. Because 
this variation is comparatively flat in the region of hmm and towards 
the end of the transition region, the accuracy with which the values 
of the second and third parameters listed in the foregoing could be 
determined was not high. The variation of the three parameters with 
RP is shown in Fig. 3. All three will, in general, depend on R,,, F,., and 
RJDh- The effects of F r and Rc/Dh are, however, expected to be small, 
since changes in F r will mainly influence the flow close to the nozzle 
and because Rc/Dh, which is a measure of curvature effects, is com
paratively close to 1. 

From Fig. 3 it will be seen that hmm is a constant given approxi
mately by 

h„ ;0.25 (4) 

Now it is expected from experience with other similar flows that 
transition will occur when the Reynolds number based on distance 
down the surface from the nozzle, i.e., 
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V 

reaches a critical value. The variation of R* at which hm[„ occurs, i.e., 
Rjrmin. rather than xmm itself is therefore shown in Fig. 3. As expected 
because of the difficulty in accurately locating x m;n, the scatter is quite 
large although there appears to be no dependency on F r and RJDh. 
From this figure, it will be seen that transition occurs when Rx is be
tween 105 and 2 X 105 over the Reynolds number range covered by the 
present tests. The actual variation of R^tran with R„ is approximately 
linear and given by 

R.tmin = 110,000 + 1.25 Re (6) 

From the variation of the transition length, A3ctran, with Re shown 
in Fig. 3, it will be seen that at the higher values of Re, AJ t r an appears 
to be approximately constant but increases with decreasing Re. 

Conclusions 
(1) When the cooling film originates at a shaped nozzle, large 

variations in the heat transfer rate along the surface arise due to 
changes in the type of flow within the film. 

(2) Empirical equations have been developed to describe the main 
characteristics of the heat transfer coefficient variation. 
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N o m e n c l a t u r e 
a, d = cylinder radius and diameter 
C/ = skin friction coefficient 
h = heat transfer coefficient, ql(Tw - T„) 
hn = heat transfer coefficient at reattachment point 
£ = distance from leading edge to reattachment point 
Nu = Nusselt number, hd/X 
T„, Uoo = temperature and velocity at upstream uniform flow 
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q = heat flux per unit area from wall to fluid 
Re = Reynolds number, U«,d/i> 
T, Tw = temperature and wall temperature 
U, U,„ = x-component of local and free stream velocity 
x = axial distance from leading edge 
y = radial distance from cylinder surface 
&d = displacement thickness, Jo (1 + y/a)(l — U/Um)dy 
ST = thermal boundary layer thickness, J ,7 (1 + y/a)(T — T„)/(T,r 

- T„)dy 
A = thermal conductivity of air 
v = kinematic viscosity of air 

I n t r o d u c t i o n 
Prediction of heat transfer in the separated, reattached, and 

redeveloped regions of incompressible or subsonic flow is very im
portant in relation to various engineering aspects. We have presented 
an experimental study of the heat transfer in the separated, reat
tached, and redeveloped flow over a blunt flat plate [l].3 Seban [2] and 
Solntsev [3] have investigated three-dimensional flows; however, 
two-dimensional flows or internal flows have been the subject of study 
in the previous works which have been reviewed by Fletcher, et al. 
[4]. 

The purpose of the study reported in this note was to investigate 
the heat transfer characteristics in the separated, reattached, and 
redeveloped regions for longitudinal incompressible air flow along 
a blunt circular cylinder. The development of the flow is made clear 
through measurements of velocity and temperature in the separated, 
reattached, and redeveloped regions. The correlations of the heat 
transfer characteristics between the present axisymmetric flow over 
a longitudinal blunt circular cylinder and the two-dimensional flow 
over a flat plate with blunt leading edge [1] are also discussed. The 
flow characteristics of the present flow configuration have already 
been reported in an earlier paper [5]. The heat transfer characteristics 
are discussed in this note. The coordinate system employed is the 
same as that in [5]. 

E x p e r i m e n t a l A p p a r a t u s and T e c h n i q u e 
The wind tunnel used in the experiments is the same as that em

ployed in the previous work by Ota [5]. The test circular cylinder is 
38 mm in diameter and 504-mm long. Two stainless steel sheets 
(0.05-mm thick and 59-mm wide), which cover the whole circumfer
ence of cylinder except two slits, are stuck to a polyvinyl chloride pipe 
of 38-mm dia and 3.8-mm thick and they are electrically connected 
at the leading edge through a brass circular plate 3-mm thick, and the 
inside of the pipe is filled with polyurethane as insulator. The leading 
edge of the cylinder is sharply cut at 90 deg in order that the flow al
ways separates there over the whole circumference. The cylinder was 
set at the center of the working section and was supported to a strut 
at the most downstream section, and minute attention was paid in 
order not to injure the axisymmetry of the flow and not to vibrate the 
cylinder. The temperatures on the heating surface were measured with 
0.07-mm copper-constantan thermocouples soldered on the back of 
the stainless steel sheet. 20 thermocouples are located in the axial 
direction along a generatrix of the cylinder; furthermore three ther
mocouples are added to the back of the polyvinyl chloride pipe in 
order to estimate the heat loss from the test surface to the support. 
The positions of thermocouples will be clear in a following figure which 
shows the present experimental results. The experimental procedure 
was almost the same as that employed in the earlier study of the 
two-dimensional flow [1]. The experiments were conducted under the 
condition of constant heat flux. The temperature differences between 
the wall and the free stream were at most about 40 °C which occurred 
at the most downstream section. These temperature differences did 
not materially affect the flow characteristics compared with the 
previous results [5]. The thermal conductivity of air and the kinematic 
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reaches a critical value. The variation of R* at which hm[„ occurs, i.e., 
Rjrmin. rather than xmm itself is therefore shown in Fig. 3. As expected 
because of the difficulty in accurately locating x m;n, the scatter is quite 
large although there appears to be no dependency on F r and RJDh. 
From this figure, it will be seen that transition occurs when Rx is be
tween 105 and 2 X 105 over the Reynolds number range covered by the 
present tests. The actual variation of R^tran with R„ is approximately 
linear and given by 

R.tmin = 110,000 + 1.25 Re (6) 

From the variation of the transition length, A3ctran, with Re shown 
in Fig. 3, it will be seen that at the higher values of Re, AJ t r an appears 
to be approximately constant but increases with decreasing Re. 

Conclusions 
(1) When the cooling film originates at a shaped nozzle, large 

variations in the heat transfer rate along the surface arise due to 
changes in the type of flow within the film. 

(2) Empirical equations have been developed to describe the main 
characteristics of the heat transfer coefficient variation. 
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redeveloped regions of incompressible or subsonic flow is very im
portant in relation to various engineering aspects. We have presented 
an experimental study of the heat transfer in the separated, reat
tached, and redeveloped flow over a blunt flat plate [l].3 Seban [2] and 
Solntsev [3] have investigated three-dimensional flows; however, 
two-dimensional flows or internal flows have been the subject of study 
in the previous works which have been reviewed by Fletcher, et al. 
[4]. 

The purpose of the study reported in this note was to investigate 
the heat transfer characteristics in the separated, reattached, and 
redeveloped regions for longitudinal incompressible air flow along 
a blunt circular cylinder. The development of the flow is made clear 
through measurements of velocity and temperature in the separated, 
reattached, and redeveloped regions. The correlations of the heat 
transfer characteristics between the present axisymmetric flow over 
a longitudinal blunt circular cylinder and the two-dimensional flow 
over a flat plate with blunt leading edge [1] are also discussed. The 
flow characteristics of the present flow configuration have already 
been reported in an earlier paper [5]. The heat transfer characteristics 
are discussed in this note. The coordinate system employed is the 
same as that in [5]. 

E x p e r i m e n t a l A p p a r a t u s and T e c h n i q u e 
The wind tunnel used in the experiments is the same as that em

ployed in the previous work by Ota [5]. The test circular cylinder is 
38 mm in diameter and 504-mm long. Two stainless steel sheets 
(0.05-mm thick and 59-mm wide), which cover the whole circumfer
ence of cylinder except two slits, are stuck to a polyvinyl chloride pipe 
of 38-mm dia and 3.8-mm thick and they are electrically connected 
at the leading edge through a brass circular plate 3-mm thick, and the 
inside of the pipe is filled with polyurethane as insulator. The leading 
edge of the cylinder is sharply cut at 90 deg in order that the flow al
ways separates there over the whole circumference. The cylinder was 
set at the center of the working section and was supported to a strut 
at the most downstream section, and minute attention was paid in 
order not to injure the axisymmetry of the flow and not to vibrate the 
cylinder. The temperatures on the heating surface were measured with 
0.07-mm copper-constantan thermocouples soldered on the back of 
the stainless steel sheet. 20 thermocouples are located in the axial 
direction along a generatrix of the cylinder; furthermore three ther
mocouples are added to the back of the polyvinyl chloride pipe in 
order to estimate the heat loss from the test surface to the support. 
The positions of thermocouples will be clear in a following figure which 
shows the present experimental results. The experimental procedure 
was almost the same as that employed in the earlier study of the 
two-dimensional flow [1]. The experiments were conducted under the 
condition of constant heat flux. The temperature differences between 
the wall and the free stream were at most about 40 °C which occurred 
at the most downstream section. These temperature differences did 
not materially affect the flow characteristics compared with the 
previous results [5]. The thermal conductivity of air and the kinematic 
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Fig. 1 Local Nusselt number distribution 

viscosity are estimated at the upstream temperature. The upstream 
velocity U™ ranges from 9.7 m/s to 22.6 m/s and the corresponding 
Reynolds number Re from 24900 to 53600. 

Before making the heat transfer study, measurements were made 
on the pressure distributions on the cylinder surface and the velocity 
and pressure profiles in the separated, reattached, and redeveloped 
flow regions, and these results in general confirmed the axisymmetry 
of the flow. In these preliminary measurements of velocity and pres
sure, use was made of a pitot tube having an elliptic nose (0.80 X 0.46 
mm) and of a 0.80-mm static tube. The velocity and temperature 
measurements were made with a constant temperature hot-wire an
emometer with a linearizer and a temperature probe consisting of a 
0.07-mm copper-constantan thermocouple. The single wire probe used 
was made of 0.005-mm tungsten wire and was calibrated in the up
stream uniform flow. The hot-wire was mounted at 90 deg to the flow 
direction in the plane parallel to the cylinder surface. Thus only the 
longitudinal component of velocity was determined from linearized 
mean voltage reading, which was corrected for temperature effects 
following the equation, 

Ex •• Ett(Thw - T„) 2 / ( r , „ , - T„)2 (1) 

in which Tj,„, is the temperature of hot-wire and E„ denotes the mean 
voltage reading at a point of temperature T„, a n d E „ corresponds to 
that at the same point but at temperature T„ at which the calibrations 
are made. No corrections were made for the tunnel wall effects in the 
present study. 

Results and Discussion 
Distributions of the heat transfer coefficient are shown in the form 

of Nu/Re0'75 for various Reynolds numbers in Fig. 1. The heat transfer 
coefficient increases sharply to the downstream in the separated flow 
region and attains a maximum at about x/d = 1.4, and that is inde
pendent of the Reynolds number investigated in the present study. 
This position is confirmed with a tuft, to be the reattachment region 
and also is a point where the skin friction coefficient becomes zero, 
which will be discussed later. Therefore, the Nusselt number at x/d 
= 1.4 is hereafter called the reattachment Nusselt number. The heat 
transfer coefficient decreases downstream from the reattachment 
region and approaches a value for the turbulent boundary layer on 
the longitudinal circular cylinder without separation and reattach
ment. The correlation of the reattachment Nusselt number with 
Reynolds number obtained by means of the method of least square 
is 

hRd/\ = 0.0804 Re 0 7 4 7 
(2) 

The power of Reynolds number is almost equal to 0.75, therefore the 
Nusselt number distributions are shown in the form of Nu/Re0 '75 in 
Fig. 1. Nu/Re0-75 is independent of the Reynolds number with some 
scatter and is a function of only the distance from the leading edge 
as seen in the figure. The power of Reynolds number 0.747 is a little 
larger than the value of 0.709 for a blunt flat plate [1] and of 2/3 which 

is found in previous works, for example [6]. This difference may partly 
be due to the three dimensional effects of flow, however the experi
mental scatters may also be a factor. When the distance from the 
leading edge to the reattachment point ( is used as the characteristic 
length of the Reynolds and Nusselt numbers, the following expres
sions of the reattachment Nusselt number are obtained, 

hR(/X = 0.0875 ((J„<?A>)0'747 

for the present axisymmetric flow and 

hR(l\ = 0.143 {Ua/v)0-1™ 

(3) 

(4) 

for the flat plate flow [1]. Present results of equation (3) are smaller 
by 7-10 percent than those of equation (4) for the two-dimensional 
flow, but they are in good agreement with each other in the Reynolds 
number range studied. In the redeveloped flow region downstream 
of reattachment, a following empirical expression for the correlation 
of the Nusselt number with the Reynolds number is obtained by 
means of the method of least square, 

hx/X = 0.109 (fi.xA)0-701 (x/d a 3.3) (5) 

This result agrees well with that for the two-dimensional flow. How
ever these results are about 30-50 percent larger than the well-known 
Colburn equation, and the present high heat transfer coefficient may 
be produced from the high turbulence intensity as compared with that 
of the normal boundary layer without separation and reattachment 
[5]. It could be concluded from these discussions that the strong 
similarity exists between the present axisymmetric flow and the 
two-dimensional one. 

The velocity and temperature distributions were measured under 
a fixed upstream velocity and a fixed heat flux. The flow character
istics obtained in the present study are almost the same as those ob
tained under the non-heating condition in the earlier work [5]. 
Therefore detailed descriptions are avoided in this note. The tem
perature profiles in the separated and reattached flow regions are 
shown in Fig. 2 and those in the redeveloped region in Fig. 3. In the 
separated region, a large reverse flow exists [5] and the temperature 
profile shows a peculiar deviation from other regions, that is, the 
temperature decreases sharply in two regions; in the neighborhoods 
of the wall and the separated streamline where the strong shear layers 
exist. Similar behaviors are detected in the work of the downward step 
[7]. The temperature profile is found to become nearly similar at about 
2.5-3 cylinder diameters downstream from the leading edge with some 
scatter near the wall. This distance is much shorter than that for the 
velocity profile [5]. It could be inferred from this fact that after the 
reattachment of flow, the thermal boundary layer develops much 
quicker than the flow boundary layer. In Figs. 2 and 3, the thermal 
and flow boundary layer characteristics are included. The thermal 
boundary'layer thickness is much smaller than the displacement 
thickness, and it is relatively large in the separated and reattached 
regions and after reattachment, decreases in the downward direction 
up to about x/d = 3 and subsequently increases in the same direction. 
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45000, q = 1.63 kW/mz 

Fig. 3 Temperature profile in the redeveloped flow region, Re = 45000, q 
= 1.63 kW/m2 

It is interesting to note that the point at which the thermal boundary 
layer thickness becomes nearly minimum is quite close to that where 
the temperature profile attains near similarity. Present skin friction 
coefficients whose calculating procedure is described in [5] agree well 
with the data obtained under the non-heating condition. A point of 
zero skin friction coefficient (extrapolated) occurs at about x/d = 1.4 
and this position is exactly the same as that of maximum heat transfer 
coefficient as already shown in Fig. 1. In the earlier paper [5], the 
reattachment point is said to occur at x/d = 1.6, however this value 
is determined as an average value of those obtained with three dif
ferent methods; tuft probe exploration, zero skin friction, and nearly 
maximum pressure on the surface, and the value estimated with zero 
skin friction is about x/d = 1.4 as described there. It might be con
cluded that the heat transfer coefficient takes its maximum at the 
reattachment point where the skin friction attains zero, therefore it 
may not be acceptable to estimate the heat transfer coefficient at the 
reattachment point from the skin friction coefficient with existing 
analogies between them, as already pointed out by Spalding [8]. 
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Reduction of Heat Transfer 
to Gun Barrels by Wear-
Reducing Additives1 

E. G. Plett.2 The problem of how to evaluate the heat being 
transferred to the walls of a vessel containing high temperature gases 
for a very short time period presents itself from time to time. Mea
surements of temperature rise within the wall together with appro
priate analysis can be used for this purpose. Care must, however, be 
exercised to be sure that no unnecessary assumptions are made which 
lead to erroneous computations. One such error was made in the 
Brosseau-Ward paper. This note is intended to point out how the 
reasoning in that paper was erroneous with respect to the heat transfer 
computation, and to point out the correct criterion for detecting the 
cessation of heat input. It is only fair to add that the error mentioned 
probably did not change the conclusions of the paper, and that the 
paper is a very worthwhile contribution to the study of wear in gun 
barrels. 

The statement under scrutiny is that when the thermocouple 
nearest the gun bore had reached its maximum temperature, no fur
ther heat was transferred to the barrel from the hot gases. This may 
be so in isolated cases, but is not generally true. This can be demon
strated by solving the one-dimensional heat conduction equations 
for a transient case. The point to be illustrated is that the temperature 
in the slab near the surface, or at the surface, could be falling with time 
while heat is flowing into the slab. This simply means that heat is 
flowing away from the surface (into the slab interior) faster than it 
is being introduced to the surface from the hot gases. There can, 
however, still be a substantial heat transfer rate to the solid while the 
surface temperature is falling. 

Consider the one-dimensional, nonsteady heat conduction in a 
planar slab or cylinder, 

^ - ^ ? (slab) 
a dt dx~ 

ldT 

a dt 

1 d dT\ 1 0 / 01\ 
r dr V d r / 

( cylinder) 

(1) 

(2) 

By simply integrating equation (1), it can be shown that for a thick 
slab with zero temperature gradient at some distance b from the 
surface, the heat flux at the surface is 

1 By T. L. Brosseau and J. R. Ward, published in the Nov. 1975 issue of the 
JOURNAL OF HEAT TRANSFER, TRANS. ASME, Series C, Vol. 97, pp. 
610-614. 
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d T l 

dx I 

r i d cx"b , dT I 
j Tdx +— 

La dt Jx=o. dx I 

(3) 

This equation illustrates that for dT/dx = 0 , at x = b, the heat flow 
ends when the time derivative of the integral of the temperature over 
the slab thickness is zero, not when the time derivative of the surface 
temperature is zero. Similarly, integration of equation (2) from r, to 
/'o yields 

dTl 

dr I 
1 r 

*sri 

Trdr + ro
a r I 
dr I 

(4) 

This also clearly shows that the time of peak temperature for the 
inner surface does not coincide with the cessation of heat flow into 
the cylinder, as stated by Brosseau and Ward. The time for which the 
temperature ceases to rise at the surface is the time for which the heat 
transfer into the slab (or cylindrical solid) balances the heat flow to 
the slab from the outside. This is a common phenomenon in shock-
tube or gun-tube flows for which the initial heating rate is high, then 
gradually decreases as the gases cool. Heat continues to flow into the 
solid, however, as long as the spatial temperature gradient is such that 
the temperature just beneath the surface is less than the surface 
temperature. Therefore, the correct criterion for detecting the ces
sation of heat input is when the surface spatial temperature gradient 

Authors' Closure 

Professor Plett is correct when he asserts that a thermocouple near 
the bore surface reaching its maximum temperature is not a necessary 
and sufficient condition for cessation of all heat transfer into the gun 
barrel. 

We merely wish to demonstrate in this reply that the assumption 
we made, namely, that no significant heat transfer occurred after 
100-ms is valid. If the total heat transfer estimates are made with the 
temperature versus radius curve at 100 ms extrapolated horizontally 
from the thermocouple nearest the bore surface to barrel surface, then 
the condition of no further heat transfer from the propellant gases 
to the gun barrel is satisfied. When this is done, the heat transfer es
timate is less than 0.5 percent of the estimate of heat transfer made 
in the paper. This difference is well within experimental error of our 
technique. The reason for this is that the thermocouple nearest the 
bore surface has dropped considerably at 100 ms from its maximum 
value, and consequently, the temperature gradient close to the surface 
is shallow. Hence, no significant further heat is transferred to the gun 
barrel after the 100 ms time interval. 
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